Most computational models of abdominal aortic aneurysms address either the hemodynamics within the lesion or the mechanics of the wall. More recently, however, some models have appropriately begun to account for the evolving mechanics of the wall in response to the changing hemodynamic loads. Collectively, this large body of work has provided tremendous insight into this life-threatening condition and has provided important guidance for current research. Nevertheless, there has yet to be a comprehensive model that addresses the mechanobiology, biochemistry, and biomechanics of thrombus-laden abdominal aortic aneurysms. That is, there is a pressing need to include effects of the hemodynamics on both the development of the nearly ubiquitous intraluminal thrombus and the evolving mechanics of the wall, which depends in part on biochemical effects of the adjacent thrombus. Indeed, there is increasing evidence that intraluminal thrombus in abdominal aortic aneurysms is biologically active and should not be treated as homogeneous inert material. In this review paper, we bring together diverse findings from the literature to encourage next generation models that account for the biochemomechanics of growth and remodeling in patient-specific, thrombus-laden abdominal aortic aneurysms.

References

1.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
,
2008
, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Annu. Rev. Biomed. Eng.
,
10
, pp.
221
246
.10.1146/annurev.bioeng.10.061807.160439
2.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.10.1016/j.jbiomech.2011.11.021
3.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.10.1016/j.jbiomech.2006.09.003
4.
Salsac
,
A. V.
,
Sparks
,
S. R.
, and
Lasheras
,
J. C.
,
2004
, “
Hemodynamic Changes Occurring During the Progressive Enlargement of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
18
(
1
), pp.
14
21
.10.1007/s10016-003-0101-3
5.
Salsac
,
A.-V.
,
Sparks
,
S. R.
,
Chomaz
,
J. M.
, and
Lasheras
,
J. C.
,
2006
, “
Evolution of the Wall Shear Stresses During the Progressive Enlargement of Symmetric Abdominal Aortic Aneurysms
,”
J. Fluid Mech.
,
550
, pp.
19
51
.10.1017/S002211200600036X
6.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
7.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
8.
O'Rourke
,
M. J.
,
McCullough
,
J. P.
, and
Kelly
,
S.
,
2012
, “
An Investigation of the Relationship Between Hemodynamics and Thrombus Deposition Within Patient-Specific Models of Abdominal Aortic Aneurysm
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
226
(
7
), pp.
548
564
.10.1177/0954411912444080
9.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas: A Fluid Dynamical Approach to Intra-Luminal Thrombus Formation
,”
J. R. Soc., Interface
,
8
(
63
), pp.
1449
1461
.10.1098/rsif.2011.0041
10.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2012
, “
Characterization of the Transport Topology in Patient-Specific Abdominal Aortic Aneurysm Models
,”
Phys. Fluids
,
24
(
8
), p.
081901
.10.1063/1.4744984
11.
Gersh
,
K. C.
,
Nagaswami
,
C.
, and
Weisel
,
J. W.
,
2009
, “
Fibrin Network Structure and Clot Mechanical Properties are Altered by Incorporation of Erythrocytes
,”
Thromb. Haemostasis
,
102
(
6
), pp.
1169
1175
.10.1160/TH09-03-0199
12.
Tong
,
J.
,
Cohnert
,
T.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2011
, “
Effects of Age on the Elastic Properties of the Intraluminal Thrombus and the Thrombus-Covered Wall in Abdominal Aortic Aneurysms: Biaxial Extension Behaviour and Material Modelling
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(
2
), pp.
207
219
.10.1016/j.ejvs.2011.02.017
13.
Scott
,
D. J.
,
Prasad
,
P.
,
Philippou
,
H.
,
Rashid
,
S. T.
,
Sohrabi
,
S.
,
Whalley
,
D.
,
Kordowicz
,
A.
,
Tang
,
Q.
,
West
,
R. M.
,
Johnson
,
A.
,
Woods
,
J.
,
Ajjan
,
R. A.
, and
Ariëns
,
R. A.
,
2011
, “
Clot Architecture is Altered in Abdominal Aortic Aneurysms and Correlates With Aneurysm Size
,”
Arterioscler., Thromb., Vasc. Biol.
,
31
(
12
), pp.
3004
3010
.10.1161/ATVBAHA.111.236786
14.
Takagi
,
H.
,
Manabe
,
H.
,
Kawai
,
N.
,
Goto
,
S. N.
, and
Umemoto
,
T.
,
2009
, “
Circulating Lipoprotein(a) Concentrations and Abdominal Aortic Aneurysm Presence
,”
Interact Cardiovasc. Thorac. Surg.
,
9
(
3
), pp.
467
470
.10.1510/icvts.2009.208843
15.
Pulinx
,
B.
,
Hellenthal
,
F. A.
,
Hamulyák
,
K.
,
van Dieijen-Visser
,
M. P.
,
Schurink
,
G. W.
, and
Wodzig
,
W. K.
,
2011
, “
Differential Protein Expression in Serum of Abdominal Aortic Aneurysm Patients—A Proteomic Approach
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(
5
), pp.
563
570
.10.1016/j.ejvs.2011.07.019
16.
Mann
,
K. G.
,
2003
, “
Thrombin Formation
,”
Chest
,
124
(
3 Suppl
), pp.
4S
10S
.10.1378/chest.124.3_suppl.4S
17.
Weisel
,
J. W.
,
2004
, “
The Mechanical Properties of Fibrin for Basic Scientists and Clinicians
,”
Biophys. Chem.
,
112
(
2–3
), pp.
267
276
.10.1016/j.bpc.2004.07.029
18.
Weisel
,
J. W.
,
2007
, “
Structure of Fibrin: Impact on Clot Stability
,”
J. Thromb. Haemost.
,
5
(
Suppl 1
), pp.
116
124
.10.1111/j.1538-7836.2007.02504.x
19.
Furie
,
B.
, and
Furie
,
B. C.
,
2007
, “
In Vivo Thrombus Formation
,”
J. Thromb. Haemost.
,
5
(
Suppl 1
), pp.
12
17
.10.1111/j.1538-7836.2007.02482.x
20.
Gersh
,
K. C.
,
Edmondson
,
K. E.
, and
Weisel
,
J. W.
,
2010
, “
Flow Rate and Fibrin Fiber Alignment
,”
J. Thromb. Haemost.
,
8
(
12
), pp.
2826
2828
.10.1111/j.1538-7836.2010.04118.x
21.
Varjú
,
I.
,
Sótonyi
,
P.
,
Machovich
,
R.
,
Szabó
,
L.
,
Tenekedjiev
,
K.
,
Silva
,
M. M.
,
Longstaff
,
C.
, and
Kolev
,
K.
,
2011
, “
Hindered Dissolution of Fibrin Formed Under Mechanical Stress
,”
J. Thromb. Haemost.
,
9
(
5
), pp.
979
986
.10.1111/j.1538-7836.2011.04203.x
22.
Xu
,
Z.
,
Kamocka
,
M.
,
Alber
,
M.
, and
Rosen
,
E. D.
,
2011
, “
Computational Approaches to Studying Thrombus Development
,”
Arterioscler., Thromb., Vasc. Biol.
,
31
(
3
), pp.
500
505
.10.1161/ATVBAHA.110.213397
23.
Lobanov
,
A. I.
, and
Starozhilova
,
T. K.
,
2005
, “
The Effect of Convective Flows on Blood Coagulation Processes
,”
Pathophysiol. Haemost. Thromb.
,
34
(
2–3
), pp.
121
134
.10.1159/000089932
24.
Anand
,
M.
,
Rajagopal
,
K.
, and
Rajagopal
,
K. R.
,
2005
, “
A Model for the Formation and Lysis of Blood Clots
,”
Pathophysiol. Haemost. Thromb.
,
34
(
2–3
), pp.
109
120
.10.1159/000089931
25.
Xu
,
Z.
,
Chen
,
N.
,
Kamocka
,
M. M.
,
Rosen
,
E. D.
, and
Alber
,
M.
,
2008
, “
A Multiscale Model of Thrombus Development
,”
J. R. Soc., Interface
,
5
(
24
), pp.
705
722
.10.1098/rsif.2007.1202
26.
Xu
,
Z.
,
Lioi
,
J.
,
Mu
,
J.
,
Kamocka
,
M. M.
,
Liu
,
X.
,
Chen
,
D. Z.
,
Rosen
,
E. D.
, and
Alber
,
M.
,
2010
, “
A Multiscale Model of Venous Thrombus Formation With Surface-Mediated Control of Blood Coagulation Cascade
,”
Biophys. J.
,
98
(
9
), pp.
1723
1732
.10.1016/j.bpj.2009.12.4331
27.
Biasetti
,
J.
,
Spazzini
,
P. G.
,
Swedenborg
,
J.
, and
Gasser
,
T. C.
,
2012
, “
An Integrated Fluid-Chemical Model Toward Modeling the Formation of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
Front. Physiol.
,
3
, pp.
266
270
.10.3389/fphys.2012.00266
28.
Leiderman
,
K.
, and
Fogelson
,
A. L.
,
2011
, “
Grow With the Flow: A Spatial-Temporal Model of Platelet Deposition and Blood Coagulation Under Flow
,”
Math. Med. Biol.
,
28
(
1
), pp.
47
84
.10.1093/imammb/dqq005
29.
Scianna
,
M.
, and
Preziosi
,
L.
,
2012
, “
Multiscale Developments of the Cellular Potts Model
,”
Multiscale Model. Simul.
,
10
(
2
), pp.
342
382
.10.1137/100812951
30.
Flamm
,
M. H.
, and
Diamond
,
S. L.
,
2012
, “
Multiscale Systems Biology and Physics of Thrombosis Under Flow
,”
Ann. Biomed. Eng.
,
40
(
11
), pp.
2355
2364
.10.1007/s10439-012-0557-9
31.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
,
2011
, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2010
2026
.10.1007/s10439-011-0285-6
32.
Biasetti
,
J.
,
Gasser
,
T. C.
,
Auer
,
M.
,
Hedin
,
U.
, and
Labruto
,
F.
,
2010
, “
Hemodynamics of the Normal Aorta Compared to Fusiform and Saccular Abdominal Aortic Aneurysms With Emphasis on a Potential Thrombus Formation Mechanism
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
380
390
.10.1007/s10439-009-9843-6
33.
van Dam
,
E. A.
,
Dams
,
S. D.
,
Peters
,
G. W.
,
Rutten
,
M. C.
,
Schurink
,
G. W.
,
Buth
,
J.
, and
van de Vosse
,
F. N.
,
2006
, “
Determination of Linear Viscoelastic Behavior of Abdominal Aortic Aneurysm Thrombus
,”
Biorheology
,
43
(
6
), pp.
695
707
.
34.
Brady
,
A. R.
,
Thompson
,
S. G.
,
Fowkes
,
F. G.
,
Greenhalgh
,
R. M.
, and
Powell
,
J. T.
,
2004
, “
Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance
,”
Circulation
,
110
(
1
), pp.
16
21
.10.1161/01.CIR.0000133279.07468.9F
35.
Kurvers
,
H.
,
Veith
,
F. J.
,
Lipsitz
,
E. C.
,
Ohki
,
T.
,
Gargiulo
,
N. J.
,
Cayne
,
N. S.
,
Suggs
,
W. D.
,
Timaran
,
C. H.
,
Kwon
,
G. Y.
,
Rhee
,
S. J.
, and
Santiago
,
C.
,
2004
, “
Discontinuous, Staccato Growth of Abdominal Aortic Aneurysms
,”
J. Am. Coll. Surg.
,
199
(
5
), pp.
709
715
.10.1016/j.jamcollsurg.2004.07.031
36.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2001
, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
J. Biomech. Eng.
,
123
(
6
), pp.
536
539
.10.1115/1.1411971
37.
Fontaine
,
V.
,
Jacob
,
M. P.
,
Houard
,
X.
,
Rossignol
,
P.
,
Plissonnier
,
D.
,
Angles-Cano
,
E.
, and
Michel
,
J. B.
,
2002
, “
Involvement of the Mural Thrombus as a Site of Protease Release and Activation in Human Aortic Aneurysms
,”
Am. J. Pathol.
,
161
(
5
), pp.
1701
1710
.10.1016/S0002-9440(10)64447-1
38.
Whittaker
,
P.
, and
Przyklenk
,
K.
,
2009
, “
Fibrin Architecture in Clots: A Quantitative Polarized Light Microscopy Analysis
,”
Blood Cells Mol. Dis.
,
42
(
1
), pp.
51
56
.10.1016/j.bcmd.2008.10.014
39.
Adolph
,
R.
,
Vorp
,
D. A.
,
Steed
,
D. L.
,
Webster
,
M. W.
,
Kameneva
,
M. V.
, and
Watkins
,
S. C.
,
1997
, “
Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
25
(
5
), pp.
916
926
.10.1016/S0741-5214(97)70223-4
40.
Di Martino
,
E.
,
Mantero
,
S.
,
Inzoli
,
F.
,
Melissano
,
G.
,
Astore
,
D.
,
Chiesa
,
R.
, and
Fumero
,
R.
,
1998
, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation and Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc. Surg.
,
15
(
4
), pp.
290
299
.10.1016/S1078-5884(98)80031-2
41.
van Dam
,
E. A.
,
Dams
,
S. D.
,
Peters
,
G. W.
,
Rutten
,
M. C.
,
Schurink
,
G. W.
,
Buth
,
J.
, and
van de Vosse
,
F. N.
,
2008
, “
Non-Linear Viscoelastic Behavior of Abdominal Aortic Aneurysm Thrombus
,”
Biomech. Model. Mechanobiol.
,
7
(
2
), pp.
127
137
.10.1007/s10237-007-0080-3
42.
Georgakarakos
,
E.
,
Ioannou
,
C. V.
,
Kamarianakis
,
Y.
,
Papaharilaou
,
Y.
,
Kostas
,
T.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
,
2010
, “
The Role of Geometric Parameters in the Prediction of Abdominal Aortic Aneurysm Wall Stress
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
1
), pp.
42
48
.10.1016/j.ejvs.2009.09.026
43.
Speelman
,
L.
,
Schurink
,
G. W.
,
Bosboom
,
E. M.
,
Buth
,
J.
,
Breeuwer
,
M.
,
van de Vosse
,
F. N.
, and
Jacobs
,
M. H.
,
2010
, “
The Mechanical Role of Thrombus on the Growth Rate of an Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
51
(
1
), pp.
19
26
.10.1016/j.jvs.2009.08.075
44.
Vorp
,
D. A.
,
Mandarino
,
W. A.
,
Webster
,
M. W.
, and
Gorcsan
,
J.
,
1996
, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method
,”
Cardiovasc. Surg.
,
4
(
6
), pp.
732
739
.10.1016/S0967-2109(96)00008-7
45.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
J. Biomech.
,
39
(
13
), pp.
2347
2354
.10.1016/j.jbiomech.2006.05.011
46.
Ashton
,
J. H.
,
Vande Geest
,
J. P.
,
Simon
,
B. R.
, and
Haskett
,
D. G.
,
2009
, “
Compressive Mechanical Properties of the Intraluminal Thrombus in Abdominal Aortic Aneurysms and Fibrin-Based Thrombus Mimics
,”
J. Biomech.
,
42
(
3
), pp.
197
201
.10.1016/j.jbiomech.2008.10.024
47.
Fontaine
,
V.
,
Touat
,
Z.
,
Mtairag
,
E. M.
,
Vranckx
,
R.
,
Louedec
,
L.
,
Houard
,
X.
,
Andreassian
,
B.
,
Sebbag
,
U.
,
Palombi
,
T.
,
Jacob
,
M. P.
,
Meilhac
,
O.
, and
Michel
,
J. B.
,
2004
, “
Role of Leukocyte Elastase in Preventing Cellular Re-Colonization of the Mural Thrombus
,”
Am. J. Pathol.
,
164
(
6
), pp.
2077
2087
.10.1016/S0002-9440(10)63766-2
48.
Swedenborg
,
J.
, and
Eriksson
,
P.
,
2006
, “
The Intraluminal Thrombus as a Source of Proteolytic Activity
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
133
138
.10.1196/annals.1383.044
49.
Houard
,
X.
,
Touat
,
Z.
,
Ollivier
,
V.
,
Louedec
,
L.
,
Philippe
,
M.
,
Sebbag
,
U.
,
Meilhac
,
O.
,
Rossignol
,
P.
, and
Michel
,
J. B.
,
2009
, “
Mediators of Neutrophil Recruitment in Human Abdominal Aortic Aneurysms
,”
Cardiovasc. Res.
,
82
(
3
), pp.
532
541
.10.1093/cvr/cvp048
50.
Houard
,
X.
,
Ollivier
,
V.
,
Louedec
,
L.
,
Michel
,
J. B.
, and
Bäck
,
M.
,
2009
, “
Differential Inflammatory Activity Across Human Abdominal Aortic Aneurysms Reveals Neutrophil-Derived Leukotriene B4 as a Major Chemotactic Factor Released From the Intraluminal Thrombus
,”
FASEB J.
,
23
(
5
), pp.
1376
1383
.10.1096/fj.08-116202
51.
Michel
,
J. B.
,
Martin-Ventura
,
J. L.
,
Egido
,
J.
,
Sakalihasan
,
N.
,
Treska
,
V.
,
Lindholt
,
J.
,
Allaire
,
E.
,
Thorsteinsdottir
,
U.
,
Cockerill
,
G.
,
Swedenborg
,
J.
, and FAD EU consortium,
2011
, “
Novel Aspects of the Pathogenesis of Aneurysms of the Abdominal Aorta in Humans
,”
Cardiovasc. Res.
,
90
(
1
), pp.
18
27
.10.1093/cvr/cvq337
52.
Wiernicki
,
I.
,
Stachowska
,
E.
,
Safranow
,
K.
,
Cnotliwy
,
M.
,
Rybicka
,
M.
,
Kaczmarczyk
,
M.
, and
Gutowski
,
P.
,
2010
, “
Enhanced Matrix-Degrading Proteolytic Activity Within the Thin Thrombus-Covered Wall of Human Abdominal Aortic Aneurysms
,”
Atherosclerosis
,
212
(
1
), pp.
161
165
.10.1016/j.atherosclerosis.2010.04.033
53.
Touat
,
Z.
,
Ollivier
,
V.
,
Dai
,
J.
,
Huisse
,
M. G.
,
Bezeaud
,
A.
,
Sebbag
,
U.
,
Palombi
,
T.
,
Rossignol
,
P.
,
Meilhac
,
O.
,
Guillin
,
M. C.
, and
Michel
,
J. B.
,
2006
, “
Renewal of Mural Thrombus Releases Plasma Markers and is Involved in Aortic Abdominal Aneurysm Evolution
,”
Am. J. Pathol.
,
168
(
3
), pp.
1022
1030
.10.2353/ajpath.2006.050868
54.
Houard
,
X.
,
Leclercq
,
A.
,
Fontaine
,
V.
,
Coutard
,
M.
,
Martin-Ventura
,
J.-L.
,
Ho-Tin-Noe
,
B.
,
Touat
,
Z.
,
Meilhac
,
O.
, and
Michel
,
J.-B.
,
2006
, “
Retention and Activation of Blood-Borne Proteases in the Arterial Wall: Implications for Atherothrombosis
,”
J. Am. Coll. Cardiol.
,
48
(
9
), pp.
A3
A9
.10.1016/j.jacc.2006.04.098
55.
Khan
,
J. A.
,
Abdul Rahman
,
M. N.
,
Mazari
,
F. A.
,
Shahin
,
Y.
,
Smith
,
G.
,
Madden
,
L.
,
Fagan
,
M. J.
,
Greenman
,
J.
,
McCollum
,
P. T.
, and
Chetter
,
I. C.
,
2012
, “
Intraluminal Thrombus has a Selective Influence on Matrix Metalloproteinases and Their Inhibitors (Tissue Inhibitors of Matrix Metalloproteinases) in the Wall of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
26
(
3
), pp.
322
329
.10.1016/j.avsg.2011.08.015
56.
Folkesson
,
M.
,
Silveira
,
A.
,
Eriksson
,
P.
, and
Swedenborg
,
J.
,
2011
, “
Protease Activity in the Multi-Layered Intra-Luminal Thrombus of Abdominal Aortic Aneurysms
,”
Atherosclerosis
,
218
(
2
), pp.
294
299
.10.1016/j.atherosclerosis.2011.05.002
57.
Freestone
,
T.
,
Turner
,
R. J.
,
Coady
,
A.
,
Higman
,
D. J.
,
Greenhalgh
,
R. M.
, and
Powell
,
J. T.
,
1995
, “
Inflammation and Matrix Metalloproteinases in the Enlarging Abdominal Aortic Aneurysm
,”
Arterioscler., Thromb., Vasc. Biol.
,
15
(
8
), pp.
1145
1151
.10.1161/01.ATV.15.8.1145
58.
Curci
,
J. A.
,
Liao
,
S.
,
Huffman
,
M. D.
,
Shapiro
,
S. D.
, and
Thompson
,
R. W.
,
1998
, “
Expression and Localization of Macrophage Elastase (Matrix Metalloproteinase-12) in Abdominal Aortic Aneurysms
,”
J. Clin. Invest.
,
102
(
11
), pp.
1900
1910
.10.1172/JCI2182
59.
Rizas
,
K. D.
,
Ippagunta
,
N.
, and
Tilson
,
M. D.
,
2009
, “
Immune Cells and Molecular Mediators in the Pathogenesis of the Abdominal Aortic Aneurysm
,”
Cardiol. Rev.
,
17
(
5
), pp.
201
210
.10.1097/CRD.0b013e3181b04698
60.
Siegel
,
C. L.
,
Cohan
,
R. H.
,
Korobkin
,
M.
,
Alpern
,
M. B.
,
Courneya
,
D. L.
, and
Leder
,
R. A.
,
1994
, “
Abdominal Aortic Aneurysm Morphology: CT Features in Patients With Ruptured and Nonruptured Aneurysms
,”
AJR, Am. J. Roentgenol.
,
163
(
5
), pp.
1123
1129
.
61.
Schriefl
,
A. J.
,
Collins
,
M. J.
,
Pierce
,
D. M.
,
Holzapfel
,
G. A.
,
Niklason
,
L. E.
, and
Humphrey
,
J. D.
,
2012
, “
Remodeling of Intramural Thrombus and Collagen in an Ang-II Infusion ApoE-/- Model of Dissecting Aortic Aneurysms
,”
Thromb. Res.
,
130
(
3
), p.
pp
.
139
146
.10.1016/j.thromres.2012.04.009
62.
Houard
,
X.
,
Rouzet
,
F.
,
Touat
,
Z.
,
Philippe
,
M.
,
Dominguez
,
M.
,
Fontaine
,
V.
,
Sarda-Mantel
,
L.
,
Meulemans
,
A.
,
Le Guludec
,
D.
,
Meilhac
,
O.
, and
Michel
,
J. B.
,
2007
, “
Topology of the Fibrinolytic System Within the Mural Thrombus of Human Abdominal Aortic Aneurysms
,”
J. Pathol.
,
212
(
1
), pp.
20
28
.10.1002/path.2148
63.
Carrell
,
T. W.
,
Burnand
,
K. G.
,
Booth
,
N. A.
,
Humphries
,
J.
, and
Smith
,
A.
,
2006
, “
Intraluminal Thrombus Enhances Proteolysis in Abdominal Aortic Aneurysms
,”
Vascular
,
14
(
1
), pp.
9
16
.10.2310/6670.2006.00008
64.
Knox
,
J. B.
,
Sukhova
,
G. K.
,
Whittemore
,
A. D.
, and
Libby
,
P.
,
1997
, “
Evidence for Altered Balance Between Matrix Metalloproteinases and Their Inhibitors in Human Aortic Diseases
,”
Circulation
,
95
(
1
), pp.
205
212
.10.1161/01.CIR.95.1.205
65.
Vorp
,
D. A.
,
Lee
,
P. C.
,
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Nemoto
,
E. M.
,
Ogawa
,
S.
, and
Webster
,
M. W.
,
2001
, “
Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening
,”
J. Vasc. Surg.
,
34
(
2
), pp.
291
299
.10.1067/mva.2001.114813
66.
Diehm
,
N.
,
Di Santo
,
S.
,
Schaffner
,
T.
,
Schmidli
,
J.
,
Völzmann
,
J.
,
Jüni
,
P.
,
Baumgartner
,
I.
, and
Kalka
,
C.
,
2008
, “
Severe Structural Damage of the Seemingly Non-Diseased Infrarenal Aortic Aneurysm Neck
,”
J. Vasc. Surg.
,
48
(
2
), pp.
425
434
.10.1016/j.jvs.2008.03.001
67.
Gong
,
Y.
,
Hart
,
E.
,
Shchurin
,
A.
, and
Hoover-Plow
,
J.
,
2008
, “
Inflammatory Macrophage Migration Requires MMP-9 Activation by Plasminogen in Mice
,”
J. Clin. Invest.
,
118
(
9
), pp.
3012
3024
.10.1172/JCI32750
68.
Plow
,
E. F.
, and
Hoover-Plow
,
J.
,
2004
, “
The Functions of Plasminogen in Cardiovascular Disease
,”
Trends Cardiovasc. Med.
,
14
(
5
), pp.
180
186
.10.1016/j.tcm.2004.04.001
69.
Falcone
,
D. J.
,
McCaffrey
,
T. A.
,
Haimovitz-Friedman
,
A.
,
Vergilio
,
J. A.
, and
Nicholson
,
A. C.
,
1993
, “
Macrophage and Foam Cell Release of Matrix-Bound Growth Factors. Role of Plasminogen Activation
,”
J. Biol. Chem.
,
268
(
16
), pp.
11951
11958
.
70.
Meilhac
,
O.
,
Ho-Tin-Noé
,
B.
,
Houard
,
X.
,
Philippe
,
M.
,
Michel
,
J. B.
, and
Anglés-Cano
,
E.
,
2003
, “
Pericellular Plasmin Induces Smooth Muscle Cell Anoikis
,”
FASEB J.
,
17
(
10
), pp.
1301
1303
.10.1096/fj.02-0687fje
71.
Coutard
,
M.
,
Touat
,
Z.
,
Houard
,
X.
,
Leclercq
,
A.
, and
Michel
,
J. B.
,
2010
, “
Thrombus Versus Wall Biological Activities in Experimental Aortic Aneurysms
,”
J. Vasc. Res.
,
47
(
4
), pp.
355
366
.10.1159/000265569
72.
Antonicelli
,
F.
,
Bellon
,
G.
,
Debelle
,
L.
, and
Hornebeck
,
W.
,
2007
, “
Elastin-Elastases and Inflamm-Aging
,”
Curr. Top. Dev. Biol.
,
79
, pp.
99
155
.10.1016/S0070-2153(06)79005-6
73.
Faisal Khan
,
K. M.
,
Laurie
,
G. W.
,
McCaffrey
,
T. A.
, and
Falcone
,
D. J.
,
2002
, “
Exposure of Cryptic Domains in the Alpha 1-Chain of Laminin-1 by Elastase Stimulates Macrophages Urokinase and Matrix Metalloproteinase-9 Expression
,”
J. Biol. Chem.
,
277
(
16
), pp.
13778
13786
.10.1074/jbc.M111290200
74.
Weitz
,
J. I.
,
Leslie
,
B.
, and
Ginsberg
,
J.
,
1991
, “
Soluble Fibrin Degradation Products Potentiate Tissue Plasminogen Activator-Induced Fibrinogen Proteolysis
,”
J. Clin. Invest.
,
87
(
3
), pp.
1082
1090
.10.1172/JCI115069
75.
Nackman
,
G. B.
,
Karkowski
,
F. J.
,
Halpern
,
V. J.
,
Gaetz
,
H. P.
, and
Tilson
,
M. D.
,
1997
, “
Elastin Degradation Products Induce Adventitial Angiogenesis in the Anidjar/Dobrin Rat Aneurysm Model
,”
Surgery
,
122
(
1
), pp.
39
44
.10.1016/S0039-6060(97)90262-2
76.
Mäyränpää
,
M. I.
,
Trosien
,
J. A.
,
Fontaine
,
V.
,
Folkesson
,
M.
,
Kazi
,
M.
,
Eriksson
,
P.
,
Swedenborg
,
J.
, and
Hedin
,
U.
,
2009
, “
Mast Cells Associate With Neovessels in the Media and Adventitia of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
50
(
2
), pp.
388
395
.10.1016/j.jvs.2009.03.055
77.
Chen
,
Z. L.
, and
Strickland
,
S.
,
1997
, “
Neuronal Death in the Hippocampus is Promoted by Plasmin-Catalyzed Degradation of Laminin
,”
Cell
,
91
(
7
), pp.
917
925
.10.1016/S0092-8674(00)80483-3
78.
Michel
,
J. B.
,
Thaunat
,
O.
,
Houard
,
X.
,
Meilhac
,
O.
,
Caligiuri
,
G.
, and
Nicoletti
,
A.
,
2007
, “
Topological Determinants and Consequences of Adventitial Responses to Arterial Wall Injury
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
6
), pp.
1259
1268
.10.1161/ATVBAHA.106.137851
79.
Dal Canto
,
A. J.
,
Swanson
,
P. E.
,
O'Guin
,
A. K.
,
Speck
,
S. H.
, and
Virgin
,
H. W.
,
2001
, “
IFN-Gamma Action in the Media of the Great Elastic Arteries, a Novel Immunoprivileged Site
,”
J. Clin. Invest.
,
107
(
2
), pp.
R15
22
.10.1172/JCI11540
80.
Burns
,
W. R.
,
Wang
,
Y.
,
Tang
,
P. C.
,
Ranjbaran
,
H.
,
Iakimov
,
A.
,
Kim
,
J.
,
Cuffy
,
M.
,
Bai
,
Y.
,
Pober
,
J. S.
, and
Tellides
,
G.
,
2005
, “
Recruitment of CXCR3+ and CCR5+ T Cells and Production of Interferon-Gamma-Inducible Chemokines in Rejecting Human Arteries
,”
Am. J. Transplant.
,
5
(
6
), pp.
1226
1236
.10.1111/j.1600-6143.2005.00892.x
81.
Odekon
,
L. E.
,
Blasi
,
F.
, and
Rifkin
,
D. B.
,
1994
, “
Requirement for Receptor-Bound Urokinase in Plasmin-Dependent Cellular Conversion of Latent TGF-Beta to TGF-Beta
,”
J. Cell. Physiol.
,
158
(
3
), pp.
398
407
.10.1002/jcp.1041580303
82.
Baxter
,
B. T.
,
Davis
,
V. A.
,
Minion
,
D. J.
,
Wang
,
Y. P.
,
Lynch
,
T. G.
, and
McManus
,
B. M.
,
1994
, “
Abdominal Aortic Aneurysms are Associated With Altered Matrix Proteins of the Nonaneurysmal Aortic Segments
,”
J. Vasc. Surg.
,
19
(
5
), pp.
797
802
.10.1016/S0741-5214(94)70004-4
83.
Goodall
,
S.
,
Crowther
,
M.
,
Hemingway
,
D. M.
,
Bell
,
P. R.
, and
Thompson
,
M. M.
,
2001
, “
Ubiquitous Elevation of Matrix Metalloproteinase-2 Expression in the Vasculature of Patients With Abdominal Aneurysms
,”
Circulation
,
104
(
3
), pp.
304
309
.10.1161/01.CIR.104.3.304
84.
Tilson
,
M. D.
, and
Dang
,
C.
,
1981
, “
Generalized Arteriomegaly. A Possible Predisposition to the Formation of Abdominal Aortic Aneurysms
,”
Arch. Surg. (Chicago)
,
116
(
8
), pp.
1030
1032
.10.1001/archsurg.1981.01380200038007
85.
Iwamoto
,
T.
,
Kimura
,
A.
,
Nakai
,
T.
,
Kanaya
,
K.
, and
Ishimaru
,
S.
,
2004
, “
Implications of Carotid Arteriomegaly in Patients With Aortic Aneurysm
,”
J. Atheroscler. Thromb.
,
11
(
6
), pp.
348
353
.10.5551/jat.11.348
86.
Ayyalasomayajula
,
A.
,
Vande Geest
,
J. P.
, and
Simon
,
B. R.
,
2010
, “
Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms
,”
J. Biomech. Eng.
,
132
(
10
), p.
104502
.10.1115/1.4002370
87.
Vande Geest
,
J. P.
,
Simon
,
B. R.
, and
Mortazavi
,
A.
,
2006
, “
Toward a Model for Local Drug Delivery in Abdominal Aortic Aneurysms
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
396
399
.10.1196/annals.1383.047
88.
Daugherty
,
A.
,
Manning
,
M. W.
, and
Cassis
,
L. A.
,
2000
, “
Angiotensin II Promotes Atherosclerotic Lesions and Aneurysms in Apolipoprotein E-Deficient Mice
,”
J. Clin. Invest.
,
105
(
11
), pp.
1605
1612
.10.1172/JCI7818
89.
Anidjar
,
S.
,
Salzmann
,
J. L.
,
Gentric
,
D.
,
Lagneau
,
P.
,
Camilleri
,
J. P.
, and
Michel
,
J. B.
,
1990
, “
Elastase-Induced Experimental Aneurysms in Rats
,”
Circulation
,
82
(
3
), pp.
973
981
.10.1161/01.CIR.82.3.973
90.
Eliason
,
J. L.
,
Hannawa
,
K. K.
,
Ailawadi
,
G.
,
Sinha
,
I.
,
Ford
,
J. W.
,
Deogracias
,
M. P.
,
Roelofs
,
K. J.
,
Woodrum
,
D. T.
,
Ennis
,
T. L.
,
Henke
,
P. K.
,
Stanley
,
J. C.
,
Thompson
,
R. W.
, and
Upchurch
,
G. R.
,
2005
, “
Neutrophil Depletion Inhibits Experimental Abdominal Aortic Aneurysm Formation
,”
Circulation
,
112
(
2
), pp.
232
240
.10.1161/CIRCULATIONAHA.104.517391
91.
Dai
,
J.
,
Louedec
,
L.
,
Philippe
,
M.
,
Michel
,
J. B.
, and
Houard
,
X.
,
2009
, “
Effect of Blocking Platelet Activation With AZD6140 on Development of Abdominal Aortic Aneurysm in a Rat Aneurysmal Model
,”
J. Vasc. Surg.
,
49
(
3
), pp.
719
727
.10.1016/j.jvs.2008.09.057
92.
Hannawa
,
K. K.
,
Eliason
,
J. L.
,
Woodrum
,
D. T.
,
Pearce
,
C. G.
,
Roelofs
,
K. J.
,
Grigoryants
,
V.
,
Eagleton
,
M. J.
,
Henke
,
P. K.
,
Wakefield
,
T. W.
,
Myers
,
D. D.
,
Stanley
,
J. C.
, and
Upchurch
,
G. R.
,
2005
, “
L-Selectin-Mediated Neutrophil Recruitment in Experimental Rodent Aneurysm Formation
,”
Circulation
,
112
(
2
), pp.
241
247
.10.1161/CIRCULATIONAHA.105.535625
93.
Pagano
,
M. B.
,
Bartoli
,
M. A.
,
Ennis
,
T. L.
,
Mao
,
D.
,
Simmons
,
P. M.
,
Thompson
,
R. W.
, and
Pham
,
C. T.
,
2007
, “
Critical Role of Dipeptidyl Peptidase I in Neutrophil Recruitment During the Development of Experimental Abdominal Aortic Aneurysms
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
8
), pp.
2855
2860
.10.1073/pnas.0606091104
94.
Deng
,
G. G.
,
Martin-McNulty
,
B.
,
Sukovich
,
D. A.
,
Freay
,
A.
,
Halks-Miller
,
M.
,
Thinnes
,
T.
,
Loskutoff
,
D. J.
,
Carmeliet
,
P.
,
Dole
,
W. P.
, and
Wang
,
Y. X.
,
2003
, “
Urokinase-Type Plasminogen Activator Plays a Critical Role in Angiotensin II-Induced Abdominal Aortic Aneurysm
,”
Circ. Res.
,
92
(
5
), pp.
510
517
.10.1161/01.RES.0000061571.49375.E1
95.
Longo
,
G. M.
,
Xiong
,
W.
,
Greiner
,
T. C.
,
Zhao
,
Y.
,
Fiotti
,
N.
, and
Baxter
,
B. T.
,
2002
, “
Matrix Metalloproteinases 2 and 9 Work in Concert to Produce Aortic Aneurysms
,”
J. Clin. Invest.
,
110
(
5
), pp.
625
632
.10.1172/JCI15334
96.
Longo
,
G. M.
,
Buda
,
S. J.
,
Fiotta
,
N.
,
Xiong
,
W.
,
Griener
,
T.
,
Shapiro
,
S.
, and
Baxter
,
B. T.
,
2005
, “
MMP-12 has a Role in Abdominal Aortic Aneurysms in Mice
,”
Surgery
,
137
(
4
), pp.
457
462
.10.1016/j.surg.2004.12.004
97.
Allaire
,
E.
,
Hasenstab
,
D.
,
Kenagy
,
R. D.
,
Starcher
,
B.
,
Clowes
,
M. M.
, and
Clowes
,
A. W.
,
1998
, “
Prevention of Aneurysm Development and Rupture by Local Overexpression of Plasminogen Activator Inhibitor-1
,”
Circulation
,
98
(
3
), pp.
249
255
.10.1161/01.CIR.98.3.249
98.
Allaire
,
E.
,
Forough
,
R.
,
Clowes
,
M.
,
Starcher
,
B.
, and
Clowes
,
A. W.
,
1998
, “
Local Overexpression of TIMP-1 Prevents Aortic Aneurysm Degeneration and Rupture in a Rat Model
,”
J. Clin. Invest.
,
102
(
7
), pp.
1413
1420
.10.1172/JCI2909
99.
Grigoryants
,
V.
,
Hannawa
,
K. K.
,
Pearce
,
C. G.
,
Sinha
,
I.
,
Roelofs
,
K. J.
,
Ailawadi
,
G.
,
Deatrick
,
K. B.
,
Woodrum
,
D. T.
,
Cho
,
B. S.
,
Henke
,
P. K.
,
Stanley
,
J. C.
,
Eagleton
,
M. J.
, and
Upchurch
,
G. R.
,
2005
, “
Tamoxifen Up-Regulates Catalase Production, Inhibits Vessel Wall Neutrophil Infiltration, and Attenuates Development of Experimental Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
41
(
1
), pp.
108
114
.10.1016/j.jvs.2004.09.033
100.
Kazi
,
M.
,
Thyberg
,
J.
,
Religa
,
P.
,
Roy
,
J.
,
Eriksson
,
P.
,
Hedin
,
U.
, and
Swedenborg
,
J.
,
2003
, “
Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall
,”
J. Vasc. Surg.
,
38
(
6
), pp.
1283
1292
.10.1016/S0741-5214(03)00791-2
101.
Kazi
,
M.
,
Zhu
,
C.
,
Roy
,
J.
,
Paulsson-Berne
,
G.
,
Hamsten
,
A.
,
Swedenborg
,
J.
,
Hedin
,
U.
, and
Eriksson
,
P.
,
2005
, “
Difference in Matrix-Degrading Protease Expression and Activity Between Thrombus-Free and Thrombus-Covered Wall of Abdominal Aortic Aneurysm
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
7
), pp.
1341
1346
.10.1161/01.ATV.0000166601.49954.21
102.
Stenbaek
,
J.
,
Kalin
,
B.
, and
Swedenborg
,
J.
,
2000
, “
Growth of Thrombus may be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
20
(
5
), pp.
466
469
.10.1053/ejvs.2000.1217
103.
Hans
,
S. S.
,
Jareunpoon
,
O.
,
Balasubramaniam
,
M.
, and
Zelenock
,
G. B.
,
2005
, “
Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
41
(
4
), pp.
584
588
.10.1016/j.jvs.2005.01.004
104.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.10.1161/01.ATV.0000174129.77391.55
105.
Sun
,
N.
,
Leung
,
J. H.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Cheshire
,
N. J.
, and
Xu
,
X. Y.
,
2009
, “
Computational Analysis of Oxygen Transport in a Patient-Specific Model of Abdominal Aortic Aneurysm With Intraluminal Thrombus
,”
Br. J. Radiol.
,
82
(
1
), pp.
S18
23
.10.1259/bjr/89466318
106.
Yoshimura
,
K.
,
Ikeda
,
Y.
, and
Aoki
,
H.
,
2011
, “
Innocent Bystander? Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
Atherosclerosis
,
218
(
2
), pp.
285
286
.10.1016/j.atherosclerosis.2011.06.027
107.
Satoh
,
H.
,
Nakamura
,
M.
,
Satoh
,
M.
,
Nakajima
,
T.
,
Izumoto
,
H.
,
Maesawa
,
C.
,
Kawazoe
,
K.
,
Masuda
,
T.
, and
Hiramori
,
K.
,
2004
, “
Expression and Localization of Tumour Necrosis Factor-Alpha and its Converting Enzyme in Human Abdominal Aortic Aneurysm
,”
Clin. Sci.
,
106
(
3
), pp.
301
306
.10.1042/CS20030189
108.
Li
,
Z. Y.
,
Sadat
,
U.
,
U-King-Im
,
J.
,
Tang
,
T. Y.
,
Bowden
,
D. J.
,
Hayes
,
P. D.
, and
Gillard
,
J. H.
,
2010
, “
Association Between Aneurysm Shoulder Stress and Abdominal Aortic Aneurysm Expansion: A Longitudinal Follow-Up Study
,”
Circulation
,
122
(
18
), pp.
1815
1822
.10.1161/CIRCULATIONAHA.110.939819
109.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2012
, “
Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms
,”
J. R. Soc., Interface
,
9
(
74
), pp.
2047
2058
.10.1098/rsif.2012.0097
110.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2013
, “
Parametric Study of Effects of Collagen Turnover on the Natural History of Abdominal Aortic Aneurysms
,”
Proc. R. Soc. London, Ser. A
,
469
(
2150
), (ePub ahead of print).10.1098/rspa.2012.0556
111.
Inzoli
,
F.
,
Boschetti
,
F.
,
Zappa
,
M.
,
Longo
,
T.
, and
Fumero
,
R.
,
1993
, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Surg.
,
7
(
6
), pp.
667
674
.10.1016/S0950-821X(05)80714-5
112.
Mower
,
W. R.
,
Quiñones
,
W. J.
, and
Gambhir
,
S. S.
,
1997
, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
,
26
(
4
), pp.
602
608
.10.1016/S0741-5214(97)70058-2
113.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.10.1067/mva.2002.126087
114.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.10.1007/s10439-010-0067-6
115.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.10.1016/j.ejvs.2010.04.003
116.
Larsson
,
E.
,
Labruto
,
F.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Hultgren
,
R.
,
2011
, “
Analysis of Aortic Wall Stress and Rupture Risk in Patients With Abdominal Aortic Aneurysm With a Gender Perspective
,”
J. Vasc. Surg.
,
54
(
2
), pp.
295
299
.10.1016/j.jvs.2010.12.053
117.
Ene
,
F.
,
Gachon
,
C.
,
Delassus
,
P.
,
Carroll
,
R.
,
Stefanov
,
F.
,
O'Flynn
,
P.
, and
Morris
,
L.
,
2011
, “
In Vitro Evaluation of the Effects of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Dynamics
,”
Med. Eng. Phys.
,
33
(
8
), pp.
957
966
.10.1016/j.medengphy.2011.03.005
118.
Meyer
,
C. A.
,
Guivier-Curien
,
C.
, and
Moore
,
J. E.
,
2010
, “
Trans-Thrombus Blood Pressure Effects in Abdominal Aortic Aneurysms
,”
J. Biomech. Eng.
,
132
(
7
), p.
071005
.10.1115/1.4001253
119.
Schurink
,
G. W.
,
van Baalen
,
J. M.
,
Visser
,
M. J.
, and
van Bockel
,
J. H.
,
2000
, “
Thrombus Within an Aortic Aneurysm Does not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
,
31
(
3
), pp.
501
506
.10.1016/S0741-5214(00)90311-2
120.
Brown
,
A. E.
,
Litvinov
,
R. I.
,
Discher
,
D. E.
,
Purohit
,
P. K.
, and
Weisel
,
J. W.
,
2009
, “
Multiscale Mechanics of Fibrin Polymer: Gel Stretching With Protein Unfolding and Loss of Water
,”
Science
,
325
(
5941
), pp.
741
744
.10.1126/science.1172484
121.
Truijers
,
M.
,
Fillinger
,
M. F.
,
Renema
,
K. W.
,
Marra
,
S. P.
,
Oostveen
,
L. J.
,
Kurvers
,
H. A.
,
Schultzekool
,
L. J.
, and
Blankensteijn
,
J. D.
,
2009
, “
In-Vivo Imaging of Changes in Abdominal Aortic Aneurysm Thrombus Volume During the Cardiac Cycle
,”
J. Endovasc. Ther.
,
16
(
3
), pp.
314
319
.10.1583/08-2625.1
122.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
11
21
.10.1196/annals.1383.046
123.
Gasser
,
T. C.
,
Görgülü
,
G.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
,
2008
, “
Failure Properties of Intraluminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads
,”
J. Vasc. Surg.
,
48
(
1
), pp.
179
188
.10.1016/j.jvs.2008.01.036
124.
Labruto
,
F.
,
Blomqvist
,
L.
, and
Swedenborg
,
J.
,
2011
, “
Imaging the Intraluminal Thrombus of Abdominal Aortic Aneurysms: Techniques, Findings, and Clinical Implications
,”
J. Vasc. Interv. Radiol.
,
22
(
8
), pp.
1069
1075
.10.1016/j.jvir.2011.01.454
125.
Nchimi
,
A.
,
Defawe
,
O.
,
Brisbois
,
D.
,
Broussaud
,
T. K.
,
Defraigne
,
J. O.
,
Magotteaux
,
P.
,
Massart
,
B.
,
Serfaty
,
J. M.
,
Houard
,
X.
,
Michel
,
J. B.
, and
Sakalihasan
,
N.
,
2010
, “
MR Imaging of Iron Phagocytosis in Intraluminal Thrombi of Abdominal Aortic Aneurysms in Humans
,”
Radiology
,
254
(
3
), pp.
973
981
.10.1148/radiol.09090657
126.
Richards
,
J. M.
,
Semple
,
S. I.
,
MacGillivray
,
T. J.
,
Gray
,
C.
,
Langrish
,
J. P.
,
Williams
,
M.
,
Dweck
,
M.
,
Wallace
,
W.
,
McKillop
,
G.
,
Chalmers
,
R. T.
,
Garden
,
O. J.
, and
Newby
,
D. E.
,
2011
, “
Abdominal Aortic Aneurysm Growth Predicted by Uptake of Ultrasmall Superparamagnetic Particles of Iron Oxide: A Pilot Study
,”
Circ. Cardiovasc. Imaging
,
4
(
3
), pp.
274
281
.10.1161/CIRCIMAGING.110.959866
127.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
,
2004
, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
3
(
2
), pp.
98
113
.10.1007/s10237-004-0052-9
128.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
109
126
.10.1007/s10237-003-0033-4
129.
Watton
,
P. N.
,
Raberger
,
N. B.
,
Holzapfel
,
G. A.
, and
Ventikos
,
Y.
,
2009
, “
Coupling the Hemodynamic Environment to the Evolution of Cerebral Aneurysms: Computational Framework and Numerical Examples
,”
J. Biomech. Eng.
,
131
(
10
), p.
101003
.10.1115/1.3192141
130.
Zeinali-Davarani
,
S.
,
Sheidaei
,
A.
, and
Baek
,
S.
,
2011
, “
A Finite Element Model of Stress-Mediated Vascular Adaptation: Application to Abdominal Aortic Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
803
817
.10.1080/10255842.2010.495344
131.
Sheidaei
,
A.
,
Hunley
,
S. C.
,
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
, and
Baek
,
S.
,
2011
, “
Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry
,”
Med. Eng. Phys.
,
33
(
1
), pp.
80
88
.10.1016/j.medengphy.2010.09.012
132.
Karšaj
,
I.
, and
Humphrey
,
J. D.
,
2009
, “
A Mathematical Model of Evolving Mechanical Properties of Intraluminal Thrombus
,”
Biorheology
,
46
(
6
), pp.
509
527
.10.3233/BIR-2009-0556
You do not currently have access to this content.