AAA disease is a serious condition and a multidisciplinary approach including biomechanics is needed to better understand and more effectively treat this disease. A rupture risk assessment is central to the management of AAA patients, and biomechanical simulation is a powerful tool to assist clinical decisions. Central to such a simulation approach is a need for robust and physiologically relevant models. Vascular tissue senses and responds actively to changes in its mechanical environment, a crucial tissue property that might also improve the biomechanical AAA rupture risk assessment. Specifically, constitutive modeling should not only focus on the (passive) interaction of structural components within the vascular wall, but also how cells dynamically maintain such a structure. In this article, after specifying the objectives of an AAA rupture risk assessment, the histology and mechanical properties of AAA tissue, with emphasis on the wall, are reviewed. Then a histomechanical constitutive description of the AAA wall is introduced that specifically accounts for collagen turnover. A test case simulation clearly emphasizes the need for constitutive descriptions that remodels with respect to the mechanical loading state. Finally, remarks regarding modeling of realistic clinical problems and possible future trends conclude the article.

References

References
1.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster.
,
M.
,
1998
, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
,
27
, pp.
632
639
.10.1016/S0741-5214(98)70227-7
2.
Upchurch
, Jr.,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Physician
,
73
, pp.
1198
1204
.
3.
Patel
,
M. I.
,
Hardman
,
D. T. A.
,
Fisher
,
C. M.
, and
Appleberg
,
M.
,
1995
, “
Current Views on the Pathogenesis of Abdominal Aortic Aneurysms
,”
J. Am. Col. Surg.
,
181
, pp.
371
382
.
4.
Søgaard
,
R.
,
Laustsen
,
J.
, and
Lindholt
,
J.
,
2012
, “
Cost Effectiveness of Abdominal Aortic Aneurysm Screening and Rescreening in Men in a Modern Context: Evaluation of a Hypothetical Cohort Using a Decision Analytical Model.
,”
Br. Med. J.
,
345
, p.
e4276
.10.1136/bmj.e4276
5.
The United Kingdom EVAR Trial Investigators
,
2010
, “
Endovascular versus Open Repair of Abdominal Aortic Aneurysm
,”
N. Engl. J. Med.
,
362
, pp.
1863
1871
.10.1056/NEJMoa0909305
6.
Davies
,
M. J.
,
1998
, “
Aortic Aneurysm Formation: Lessons From Human Studies and Experimental Models
,”
Circulation
,
98
, pp.
193
195
.10.1161/01.CIR.98.3.193
7.
Kazi
,
M.
,
Thyberg
,
J.
,
Religa
,
P.
,
Roy
,
J.
,
Eriksson
,
P.
,
Hedin
,
U.
, and
Swedenborg
,
J.
,
2003
, “
Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall
,”
J. Vasc. Surg.
,
38
, pp.
1283
1292
.10.1016/S0741-5214(03)00791-2
8.
Hans
,
S. S.
,
Jareunpoon
,
O.
,
Balasubramaniam
,
M.
, and
Zelenock
,
G. B.
,
2005
, “
Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
41
(
4
), pp.
584
588
.10.1016/j.jvs.2005.01.004
9.
Choke
,
E.
,
Cockerill
,
G.
,
Wilson
,
W. R.
,
Sayed
,
S.
,
Dawson
,
J.
,
Loftus
,
I.
, and
Thompson.
,
M. M.
,
2005
, “
A Review of Biological Factors Implicated in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Endovasc. Surg.
,
30
, pp.
227
244
.10.1016/j.ejvs.2005.03.009
10.
Folkesson
,
M.
,
Silveira
,
A.
,
Eriksson
,
P.
, and
Swedenborg
,
J.
,
2011
, “
Protease Activity in the Multi-Layered Intra-Luminal Thrombus of Abdominal Aortic Aneurysms
,”
Atherosclerosis
,
218
(
2
), pp.
294
299
.10.1016/j.atherosclerosis.2011.05.002
11.
Kazi
,
M.
,
Zhu
,
C.
,
Roy
,
J.
,
Paulsson-Berne
,
G.
,
Hamsten
,
A.
,
Swedenborg
,
J.
,
Hedin
,
U.
, and
Eriksson
,
P.
,
2005
, “
Difference in Matrix-Degrading Protease Expression and Activity Between Thrombus-Free and Thrombus-Covered Wall of Abdominal Aortic Aneurysm
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
, pp.
1341
1346
.10.1161/01.ATV.0000166601.49954.21
12.
Vorp
,
D. A.
,
Lee
,
P. C.
,
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Nemoto
,
E. M.
,
Ogawa
,
S.
, and
Webster
,
M. W.
,
2001
, “
Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening
,”
J. Vasc. Surg.
,
34
, pp.
291
299
.10.1067/mva.2001.114813
13.
Li
,
Z. Y.
,
U-King-Im
,
J.
,
Tang
,
T. Y.
,
Soh
,
E.
,
See
,
T. C.
, and
Gillard
,
J. H.
,
2008
, “
Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
47
(
5
), pp.
928
935
.10.1016/j.jvs.2008.01.006
14.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
, pp.
1558
1566
.10.1161/01.ATV.0000174129.77391.55
15.
Vorp
,
D. A.
,
Mandarino
,
W. A.
,
Webster
,
M. W.
, and
Gorcsan 3rd.
,
J.
,
1996a
, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method
,”
Cardiovasc. Surg.
,
4
, pp.
732
739
.10.1016/S0967-2109(96)00008-7
16.
Wang
,
D. H. J.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
, pp.
598
604
.10.1067/mva.2002.126087
17.
Mower
,
W. R.
,
Quinones
,
W. J.
, and
Gambhir
,
S. S.
,
1997
, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
,
26
(
4
), pp.
602
608
.10.1016/S0741-5214(97)70058-2
18.
Thubrikar
,
M. J.
,
2003
, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilatation and Stress
,”
J. Cardiovasc. Surg.
,
44
, pp.
67
77
.
19.
Polzer
,
S.
,
Gasser
,
T. C.
,
Markert
,
B.
,
Bursa
,
J.
, and
Skacel
,
P.
,
2012
, “
Impact of Poroelasticity of Intraluminal Thrombus on Wall Stress of Abdominal Aortic Aneurysms
,”
BioMedical Eng.
, online
11
:
62
doi:10.1186/1475-925X-11-6210.1186/1475-925X-11-62.
20.
Schurink
,
G. W.
,
van Baalen
,
J. M.
,
Visser
,
M. J.
, and
van Bockel
,
J. H.
,
2000
, “
Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
31
, pp.
501
506
.10.1016/S0741-5214(00)90311-2
21.
Hinnen
,
J. W.
,
Koning
,
O. H.
,
Visser
,
M. J.
, and
Van Bockel
,
H. J.
,
2005
, “
Effect of Intraluminal Thrombus on Pressure Transmission in the Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
42
, pp.
1176
1182
.10.1016/j.jvs.2005.08.027
22.
Darling
,
R. C.
,
Messina
,
C. R.
,
Brewster
,
D. C.
, and
Ottinger
,
L. W.
,
1977
, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms. The Case for Early Resection
,”
Circulation
,
56
(
3
), pp.
II161
II164
.
23.
Hall
,
A. J.
,
Busse
,
E. F. G.
,
McCarville
,
D. J.
, and
Burgess
,
J. J.
,
2000
, “
Aortic Wall Tension as a Predictive Factor for Abdominal Aortic Aneurysm Rupture: Improving the Selection of Patients for Abdominal Aortic Aneurysm Repair
,”
Ann. Vasc. Surg.
,
14
, pp.
152
157
.10.1007/s100169910027
24.
The UK Small Aneurysm Trial Participants
,
1998
, “
Mortality Results for Randomised Controlled Trial of Early Elective Surgery or Ultrasonographic Surveillance for Small Abdominal Aortic Aneurysms
,”
Lancet
,
352
, pp.
1649
1655
.10.1016/S0140-6736(98)10137-X
25.
Heikkinen
,
M.
,
Salenius
,
J-P.
, and
Auvinen
,
O.
,
2002
, “
Ruptured Abdominal Aortic Aneurysm in a Well-Defined Geographical Area
,”
J. Vasc. Surg.
,
36
, pp.
291
296
.10.1067/mva.2002.125479
26.
Choksy
,
S. A.
,
Wilmink
,
A. B.
, and
Quick
,
C. R.
,
1999
, “
Ruptured Abdominal Aortic Aneurysm in the Huntingdon District: a 10-Year Experience
,”
Ann. R. College of Surgeons of England
,
81
, pp.
27
31
.
27.
Galland
,
R. B.
,
Whiteley
,
M. S.
, and
Magee
,
T. R.
,
1998
, “
The Fate of Patients Undergoing Surveillance of Small Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc
,
16
, pp.
104
109
.10.1016/S1078-5884(98)80150-0
28.
Brewster
,
D. C.
,
Cronenwett
,
J. L.
,
Hallett
,
J. W.
,
Johnston
,
K. W.
,
Krupski
,
W. C.
, and
Matsumura
,
J. S.
,
2003
, “
Guidelines for the Treatment of Abdominal Aortic Aneurysms. Report of a Subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery
,”
J. Vasc. Surg.
,
37
, pp.
1106
1117
.10.1067/mva.2003.363
29.
Limet
,
R.
,
Sakalihasan
,
N.
, and
Albert
,
A.
,
1991
, “
Determination of the Expansion Rate and the Incidence of Rupture of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
14
, pp.
540
548
.10.1016/0741-5214(91)90249-T
30.
Lederle
,
F. A.
,
Johnson
,
G. R.
,
Wilson
,
S. E.
,
Ballard
,
D. J.
,
Jordan
, Jr.,
W. D.
,
Blebea
,
J.
,
Littooy
,
F. N.
,
Freischlag
,
J. A.
,
Bandyk
,
D.
,
Rapp
,
J. H.
, and
Salam
,
A. A.
,
2002
, “
Rupture Rate of Large Abdominal Aortic Aneurysms in Patients Refusing or Unfit for Elective Repair
,”
J. Am. Med. Assoc.
,
287
(
22
), pp.
2968
2972
.10.1001/jama.287.22.2968
31.
Brown
,
P. M.
,
Zelt
,
D. T.
, and
Sobolev
,
B.
,
2003
, “
The Risk of Rupture in Untreated Aneurysms: The Impact of Size, Gender, and Expansion Rate
,”
J. Vasc. Surg.
,
37
(
2
), pp.
280
284
.10.1067/mva.2003.119
32.
Martufi
,
G.
,
Auer
,
M.
,
Roy
,
J.
,
Swedenborg
,
J.
,
Sakalihasan
,
N.
,
Panuccio
,
G.
, and
Gasser
,
T. C.
,
2012
, “
Growth of Small Abdominal Aortic Aneurysms: A Multidimensional Analysis
,”
J. Vasc. Surg.
, 10.1016/j.jvs.2012.11.070 (in press).
33.
Brown
,
L. C.
, and
Powell
,
J. T.
,
1999
, “
Risk Factors For Aneurysm Rupture in Patients Kept Under Ultrasound Surveillance. UK Small Aneurysm Trial Participants
,”
Ann. Surg.
,
230
(
3
), pp.
289
296
.10.1097/00000658-199909000-00002
34.
Cronenwett
,
J. L.
,
1996
, “
Variables That Affect the Expansion Rate and Rupture of Abdominal Aortic Aneurysms
,”
Ann N.Y. Acad. Sci.
,
800
, pp.
56
67
.10.1111/j.1749-6632.1996.tb33298.x
35.
Cronenwett
,
J. L.
,
Murphy
,
T. F.
,
Zelenock
,
G. B.
,
Whitehouse
, Jr.,
W. M.
,
Lindenauer
,
S. M.
,
Graham
,
L. M.
,
Quint
,
L. E.
,
Silver
,
T. M.
, and
Stanley
,
J. C.
,
1985
, “
Actuarial Analysis of Variables Associated With Rupture of Small Abdominal Aortic Aneurysms
,”
Surgery
,
98
, pp.
472
483
.
36.
Foster
,
J. H.
,
Bolasny
,
B. L.
,
Gobbel
, Jr.,
W. G.
, and
Scott
, Jr.,
H. W.
,
1969
, “
Comparative Study of Elective Resection and Expectant Treatment of Abdominal Aortic Aneurysm
,”
Surg. Gynecol. Obstet.
,
129
(
1
), pp.
1
9
.
37.
Sterpetti
,
A. V.
,
Cavallaro
,
A.
,
Cavallari
,
N.
,
Allegrucci
,
P.
,
Tamburelli
,
A.
,
Agosta
,
F.
, and
Bartoli
,
S.
,
1991
, “
Factors Influencing the Rupture of Abdominal Aortic Aneurysms
,”
Surg. Gynecol. Obstet.
,
173
(
3
), pp.
175
178
.
38.
Szilagyi
,
D. E.
,
Elliott
,
J. P.
, and
Smith
,
R. F.
,
1972
, “
Clinical Fate of the Patient With Asymptomatic Abdominal Aortic Aneurysm and Unfit For Surgical Treatment
,”
Arch. Surg.
,
104
(
4
), pp.
600
606
.10.1001/archsurg.1972.04180040214036
39.
Larsson
,
E.
,
Labruto
,
F.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Hultgren
,
R.
,
2011
, “
Analysis of Aortic Wall Stress and Rupture Risk in Patients With Abdominal Aortic Aneurysm With a Gender Perspective
,”
J. Vasc. Surg.
,
54
(
2
), pp.
295
299
.10.1016/j.jvs.2010.12.053
40.
MacSweeney
,
S. T.
,
Ellis
,
M.
,
Worrell
,
P. C.
,
Greenhalgh
,
R. M.
, and
Powell
,
J. T.
,
1994
, “
Smoking and Growth Rate of Small Abdominal Aortic Aneurysms
,”
Lancet
,
344
(
8923
), pp.
651
652
.10.1016/S0140-6736(94)92087-7
41.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three–Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
J. Biomech. Eng.
,
131
(
6
), p.
061015
.10.1115/1.3127256
42.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
,
1999
, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
27
, pp.
469
479
.10.1114/1.202
43.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E. S.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Shape
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.10.1007/s10439-010-0175-3
44.
Sakalihasan
,
N.
,
Hustinx
,
R.
, and
Limet
,
R.
,
2004
, “
Contribution of PET Scanning to the Evaluation of Abdominal Aortic Aneurysm
,”
Semin. Vasc. Surg.
,
17
(
2
), pp.
144
153
.10.1053/j.semvascsurg.2004.03.002
45.
Stenbaek
,
J.
,
Kalin
,
B.
, and
Swedenborg
,
J.
,
2000
, “
Growth of Thrombus May be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc.
,
20
, pp.
466
469
.10.1053/ejvs.2000.1217
46.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S.
,
Cronenwett
,
J.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk In Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
, pp.
724
732
.10.1067/mva.2003.213
47.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc.
,
40
, pp.
176
185
.10.1016/j.ejvs.2010.04.003
48.
Heng
,
M. S.
,
Fagan
,
M. J.
,
Collier
,
W.
,
Desai
,
G.
,
McCollum
,
P. T.
, and
Chetter
,
I. C.
,
2008
, “
Peak Wall Stress Measurement in Elective and Acute Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
47
, pp.
17
22
.10.1016/j.jvs.2007.09.002
49.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis For Ruptured And Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Surg.
,
28
, pp.
168
176
.10.1016/j.ejvs.2004.03.029
50.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, And Rupture Potential Index For Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
, pp.
3124
3134
.10.1007/s10439-010-0067-6
51.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
(a), “
A Noninvasive Method For Determination of Patient-Specific Wall Strength Distrubtion In Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
, pp.
1098
1106
.10.1007/s10439-006-9132-6
52.
Doyle
,
B. J.
,
Callanan
,
A.
,
Walsh
,
M. T.
,
Grace
,
P. A.
, and
McGloughlin
,
T. M.
,
2009
, “
A Finite Element Analysis Rupture Index (FEARI) As An Additional Tool For Abdominal Aortic Aneurysm Rupture Prediction
,”
Vasc. Dis. Prev.
,
6
, pp.
114
121
.10.2174/1567270000906010114
53.
Gasser
,
T. C.
,
2011(a)
, “
An Irreversible Constitutive Model For Fibrous Soft Biological Tissue: A 3D Microfiber Approach With Demonstrative Application To Abdominal Aortic Aneurysms
,”
Acta Biomater.
,
7
(
6
), pp.
2457
2466
.10.1016/j.actbio.2011.02.015
54.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D.
,
Acker
,
L.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semi-Automatic Vessel Wall Detection And Quantification of Wall Thickness In Ct Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
37
, pp.
638
648
.10.1118/1.3284976
55.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
, pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
56.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
, pp.
570
576
.10.1016/j.jvs.2005.10.072
57.
Raghavan
,
M. L.
,
Hanaoka
,
M. M.
,
Kratzberg
,
J. A.
,
de Lourdes Higuchi
,
M.
, and
da Silva
,
E.S.
,
2011
, “
Biomechanical Failure Properties And Microstructural Content of Ruptured And Unruptured Abdominal Aortic Aneurysms
,”
J. Biomech.
,
44
(
13
), pp.
2501
2507
.10.1016/j.jbiomech.2011.06.004
58.
Reeps
,
C.
,
Maier
,
A.
,
Pelisek
,
J.
,
Härtl
,
F.
,
Grabher-Meier
,
V.
,
Wall
,
W. A.
,
Essler
,
M.
,
Eckstein
,
H.-H.
, and
Gee
,
M. W.
,
2012
, “
Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall
,”
Biomech. Model. Mechanobiol.
, doi 10.1007/s10237-012-0436-1 (online).
59.
Vallabhaneni
,
S. R.
,
Gilling-Smith
,
G. L.
,
How
,
T. V.
,
Carter
,
S. D.
,
Brennan
,
J. A.
, and
Harris
,
P. L.
,
2004
, “
Heterogeneity of Tensile Strength And Matrix Metalloproteinase Activity In The Wall Of Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
,
11
, pp.
494
502
.10.1583/04-1239.1
60.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function And Uniform Strain Hypothesis For Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.10.1016/0021-9290(87)90262-4
61.
Forsell
,
C.
,
Swedenborg
,
J.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2012
, “
The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach
,”
Ann. Biomed. Eng.
,10.1007/s10439-012-0711-4 (in press).
62.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model And Evaluation of its Applicability
,”
J. Biomech.
,
33
, pp.
475
482
.10.1016/S0021-9290(99)00201-8
63.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2003
, “
Effect of Variation In Intraluminal Thrombus Constitutive Properties On Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
,
31
, pp.
804
809
.10.1114/1.1581880
64.
De Putter
,
S. B.
,
Wolters
,
J. B. M.
,
Ruttena
,
M. C. M.
,
Breeuwer
,
M.
,
Gerritsen
,
F. A.
, and
van de Vosse
,
F. N.
,
2006
, “
Patient-Specific Initial Wall Stress In Abdominal Aortic Aneurysms With A Backward Incremental Method
,”
J. Biomech.
,
40
, pp.
1081
1090
.10.1016/j.jbiomech.2006.04.019
65.
Raghavan
,
M. L.
,
Baoshun
,
M. A.
, and
Filinger
,
M. F.
,
2006
, “
Non-Invasive Determination of Zero-Pressure Geometry Of Arterial Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
9
), pp.
1414
1419
.10.1007/s10439-006-9115-7
66.
Polzer
,
S.
,
Bursa
,
J.
,
Gasser
,
T. C.
,
Staffa
,
R.
, and
Vlachovsky
,
R.
, “
A Numerical Implementation to Predict Residual Strains From the Homogeneous Stress Hypothesis With Application to Abdominal Aortic Aneurysms
” (submitted).
67.
Polzer
,
S.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Bursa
,
J.
,
2011
, “
The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Surg.
,
41
, pp.
467
473
.10.1016/j.ejvs.2010.12.010
68.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1957
, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Physiol. Pharmacol.
,
35
, pp.
681
690
10.1139/o57-080.
69.
Greenwald
,
S.
, and
Berry
,
C.
,
1980
, “
The Effect of Alterations of Scleroprotein Content on the Static Mechanical Properties of the Arterial Wall
,”
Adv. Physiol. Sci.
,
8
, pp.
203
212
.
70.
Bashey
,
R. I.
,
Cox
,
R.
,
McCann
,
J.
, and
Jimenez
,
S. A.
,
1989
, “
Changes in Collagen Biosynthesis, Types, And Mechanics of Aorta In Hypertensive Rats
,”
J. Lab. Clin. Med.
113
, pp.
604
611
.
71.
Rizzo
,
R. J.
,
McCarthy
,
W. J.
,
Dixit
,
S. N.
,
Lilly
,
M. P.
,
Shively
,
V. P.
,
Flinn
,
W. R.
, and
Yao
,
J. S. T.
,
2011
, “
Collagen Types and Matrix Protein Content In Human Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
10
, pp.
365
373
.
72.
López-Candales
,
A.
,
Holmes
,
D. R.
,
Liao
,
S.
,
Scott
,
M. J.
,
Wickline
,
S. A.
, and
Thompson
,
R. W.
,
1997
, “
Decreased Vascular Smooth Muscle Cell Density In Medial Degeneration of Human Abdominal Aortic Aneurysms
,”
Am. J. Pathol.
,
150
, pp.
993
1007
.
73.
Länne
,
T.
,
Sonesson
,
B.
,
Bergqvist
,
D.
,
Bengtsson
,
H.
, and
Gustafsson
,
D.
,
1992
, “
Diameter and Compliance in the Male Human Abdominal Aorta: Influence Of Age And Aortic Aneurysm
,”
Eur. J. Vasc. Surg.
,
6
, pp.
178
184
.10.1016/S0950-821X(05)80237-3
74.
Carmo
,
M.
,
Colombo
,
L.
,
Bruno
,
A.
,
Corsi
,
F. R.
,
Roncoroni
,
L.
,
Cuttin
,
M. S.
,
Radice
,
F.
,
Mussini
,
E.
, and
Settembrini
,
P. G.
,
2002
, “
Alteration of Elastin, Collagen And Their Cross-Links In Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
23
, pp.
543
549
.10.1053/ejvs.2002.1620
75.
Wess
,
T. J.
,
2008
,
Collagen Fibrillar Structure and Hierarchies
, in
Collagen Structure and Mechanics
, edited by
P.
Fratzl
, pp.
49
80
,
Springer
,
New York
.
76.
Finlay
,
H. M.
,
McCullough
,
L.
, and
Canham
,
P. B.
,
1995
, “
Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures
,”
J. Vasc. Res.
32
, pp.
301
312
.
77.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fiber Orientations
,”
J. R. S. Interface
,
3
, pp.
15
35
.10.1098/rsif.2005.0073
78.
Gasser
,
T. C.
,
Gallinetti
,
S.
,
Xing
,
X.
,
Forsell
,
C.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2012
, “
Spatial Orientation of Collagen Fibers In The Abdominal Aortic Aneurysms Wall And Its Relation To Wall Mechanics
,”
Acta Biomater.
,
8
(
8
), pp.
3091
3103
.10.1016/j.actbio.2012.04.044
79.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
7
, pp.
1275
1286
.10.1098/rsif.2011.0727
80.
Bishop
,
J. E.
, and
Lindahl
,
G.
,
1999
, “
Regulation of Cardiovascular Collagen Synthesis by Mechanical Load
,”
Cardiovasc. Res.
,
42
, pp.
27
44
.10.1016/S0008-6363(99)00021-8
81.
Gupta
,
V.
, and
Grande-Allen
,
K. J.
,
2006
, “
Effects of Static and Cyclic Loading in Regulating Extracellular Matrix Synthesis by Cardiovascular Cells
,”
Cardiovasc. Res.
72
, pp.
375
383
.10.1016/j.cardiores.2006.08.017
82.
Barnes
,
M. J.
,
1985
, “
Collagens in Atherosclerosis
,”
Colloid. Relat. Res.
,
5
, pp.
65
97
.10.1016/S0174-173X(85)80048-0
83.
Lanir
,
Y.
,
1983
, “
Constitutive Equations For Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.10.1016/0021-9290(83)90041-6
84.
Sluijter
,
J. P. G.
,
Smeets
,
M. B.
,
Velema
,
E.
,
Pasterkamp
,
G.
, and
de Kleijn
,
D. P. V.
,
2004
, “
Increased Collagen Turnover Is Only Partly Associated With Collagen Fiber Deposition In The Arterial Response To Injury
,”
Cardiovasc. Res.
61
, pp.
186
195
.10.1016/j.cardiores.2003.09.028
85.
Strauss
,
B. H.
,
Robinson
,
R.
,
Batchelor
,
W. B.
,
Chisholm
,
R. J.
,
Ravi
,
G.
,
Natarajan
,
M. K.
,
Logan
,
R. A.
,
Mehta
,
S. R.
,
Levy
,
D. E.
,
Ezrin
,
A. M.
, and
Keeley
,
F. W.
,
1996
, “
In Vivo Collagen Turnover Following Experimental Balloon Angioplasty Injury And The Role of Matrix Metalloproteinases
,”
Circ. Res.
,
79
, pp.
541
550
.10.1161/01.RES.79.3.541
86.
Biasetti
,
J.
,
Spazzini
,
P. G.
, and
Gasser
,
T. C.
,
2012
, “
An Integrated Fluido-Chemical Model Towards Modeling The Formation of Intra-Luminal Thrombus In Abdominal Aortic Aneurysms
,”
Front. Comp. Physiol. Med.
,
3
(
266
), doi:10.3389/fphys.2012.0026610.3389/fphys.2012.00266.
87.
Biasetti
,
J.
,
Gasser
,
T. C.
,
Auer
,
M.
,
Hedin
,
U.
, and
Labruto
,
F.
,
2010
, “
Hemodynamics of the Normal Aorta Compared To Fusiform And Saccular Abdominal Aortic Aneurysms With Emphasis On A Potential Thrombus Formation Mechanism
,”
Ann. Biomed. Eng.
,
38
, pp.
380
390
.10.1007/s10439-009-9843-6
88.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas. A Fluid Dynamical Approach to Intra-Luminal Thrombus Formation
,”
J. R. Soc. Interface
,
8
, pp.
1449
1461
.10.1098/rsif.2011.0041
89.
Karsaj
,
I.
, and
Humphrey
,
J. D.
,
2009
, “
A Mathematical Model of Evolving Mechanical Properties of Intraluminal Thrombus
,”
Biorheology
,
46
(
6
), pp.
509
527
.
90.
Touat
,
Z.
,
Ollivier
,
V.
,
Dai
J.
,
Huisse
,
M.-G.
,
Bezeaud
,
A.
,
Sebbag
,
U.
,
Palombi
,
T.
,
Rossignol
,
P.
,
Meilhac
,
O.
,
Guillin
,
M.-C.
, and
Michel
,
J.-B.
,
2006
, “
Renewal of Mural Thrombus Releases Plasma Markers and is Involved in Aortic Abdominal Aneurysm Evolution
,”
Am. J. Pathol.
,
168
, pp.
1022
1030
.10.2353/ajpath.2006.050868
91.
Gasser
,
T. C.
,
Görgülü
,
G.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
,
2008
, “
Failure Properties of Intra-Luminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads
,”
J. Vasc. Surg.
,
48
, pp.
179
188
.10.1016/j.jvs.2008.01.036
92.
Roy
,
J.
,
Labruto
,
F.
,
Beckman
,
M. O.
,
Danielson
,
J.
,
Johansson
,
G.
, and
Swedenborg
J.
,
2008
, “
Bleeding into the Intraluminal Thrombus in Abdominal Aortic Aneurysms is Associated With Rupture
,”
J. Vasc. Surg.
,
48
, pp.
1108
1113
.10.1016/j.jvs.2008.06.063
93.
Auer
,
M.
, and
Gasser
,
T. C.
,
2010
, “
Reconstruction and Finite Element Mesh Generation of Abdominal Aortic Aneurysms From Computerized Tomography Angiography Data With Minimal User Interactions
,”
IEEE Trans. Med. Imag.
,
29
(
4
), pp.
1022
1028
.10.1109/TMI.2009.2039579
94.
Gasser
,
T. C.
,
2012
, “
Bringing Vascular Biomechanics Into Clinical Practice. Simulation-Based Decisions for Elective Abdominal Aortic Aneurysms Repair
,” in
B.
Calvo
and
E.
Pena
, eds.,
Patient-Specific Computational Modeling (Lecture Notes in Computational Vision and Biomechanics)
,
Springer Science and Business Media
,
Dordrecht
.
95.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
96.
Drangova
,
M.
,
Holdsworth
,
D. W.
,
Boyd
,
C. J.
,
Dunmore
,
P. J.
,
Roach
,
M. R.
, and
Fenster
,
A.
,
1993
, “
Elasticity and Geometry Measurements of Vascular Specimens Using a High-Resolution Laboratory CT Scanner
,”
Physiol. Meas.
,
14
, pp.
277
290
.10.1088/0967-3334/14/3/006
97.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006(b)
, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
J. Biomech.
13
, pp.
2347
2354
.10.1016/j.jbiomech.2006.05.011
98.
Vaishnav
,
R. N.
,
Young
,
J. T.
,
Janicki
,
J. S.
, and
Patel
,
J. S.
,
1972
, “
Nonlinear Anisotropic Elastic Properties of The Canine Aorta
,”
Biophys. J.
,
12
(
8
), pp.
1008
1027
.10.1016/S0006-3495(72)86140-X
99.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol. Hearth C
,
237
, pp.
H620
H621
.
100.
Chuong
,
C. J.
, and
Fung
,
Y.C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.10.1115/1.3138417
101.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
(
1–2
), pp.
1
162
.
102.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
, Jr.,
J. E.
, and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.10.1016/S0021-9290(97)00025-0
103.
Rodriguez
,
J. F.
,
Martufi
,
G.
,
Doblaré
,
M.
, and
Finol
,
E. A.
,
2009
, “
The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2218
2221
.10.1007/s10439-009-9767-1
104.
Rodriguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
J. Biomech. Eng.
,
130
, p.
021023
.10.1115/1.2898830
105.
Yeoh
,
O. H.
,
1993
, “
Some Forms of Strain Energy Functions for Rubber
,”
Rubber Chem. Technol.
,
66
, pp.
754
771
.10.5254/1.3538343
106.
Wuyts
,
F. L.
,
Vanhuyse
,
V. J.
,
Langewouters
,
G. J.
,
Decraemer
,
W. F.
,
Raman
,
E. R.
,
Buyle
,
S.
,
1995
, “
Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model
,”
Phys. Med. Biol.
,
40
, pp.
1577
1597
.10.1088/0031-9155/40/10/002
107.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
,
37
(
7
), pp.
989
1000
.10.1016/j.jbiomech.2003.11.026
108.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
.10.1023/A:1010835316564
109.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
,
2002
, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A, Solids
,
21
(
3
), pp.
441
463
.10.1016/S0997-7538(01)01206-2
110.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2011
, “
A Constitutive Model for Vascular Tissue That Integrates Fibril, Fiber and Continuum Levels With Application to the Isotropic and Passive Properties of the Infrarenal Aorta
,”
J. Biomech.
,
44
, pp.
2544
2550
.10.1016/j.jbiomech.2011.07.015
111.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2011
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface
,
8
, pp.
435
450
.10.1098/rsif.2010.0299
112.
Taber
,
L. A.
,
1995
, “
Biomechanics of Growth, Remodeling and Morphogenesis
,”
Appl. Mech. Rev.
,
48
, pp.
487
545
.10.1115/1.3005109
113.
Skalak
,
R.
,
1981
, “
Growth as Finite Displacement Field
,” in
Proceedings of the IUTAM Symposium on Finite Elasticity
,
D. E.
Carlson
and RT Shield, eds.,
Martinus Nijhoff
.
114.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
115.
Kroner
,
E.
,
1960
, “
Allgemeine Kontinuumstheorie der Verzerrungen und Eigenspannungen
,”
Arch. Rat. Mech. Anal.
,
4
, pp.
273
334
.10.1007/BF00281393
116.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
,
1998
, “
A Model for Geometric and Mechanical Adaptation of Arteries to Sustained Hypertension
,”
J. Biomech. Eng.
,
120
, pp.
9
17
.10.1115/1.2834313
117.
Taber
,
L. A.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
J. Biomech. Eng.
,
120
, pp.
348
354
.10.1115/1.2798001
118.
Kuhl
,
E.
,
Maas
,
R.
,
Himpel
,
G.
, and
Menzel
,
A.
,
2007
, “
Computational Modeling of Arterial Wall Growth
,”
Biomechan. Model. Mechanobiol.
,
6
, pp.
321
331
.10.1007/s10237-006-0062-x
119.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Mater. Model. Methods Appl. Sci.
,
12
, pp.
407
430
.10.1142/S0218202502001714
120.
Watton
,
P. N.
, and
Hill
,
N. A.
,
2009
, “
Evolving Mechanical Properties of A Model of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
8
, pp.
25
42
.10.1007/s10237-007-0115-9
121.
Watton
,
P. N.
,
Heil
,
M.
, and
Hill
,
N. A.
,
2004
, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
3
, pp.
98
113
.10.1007/s10237-004-0052-9
122.
Sheidaei
,
A.
,
Hunley
,
S. C.
,
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
, and
Baek
,
S.
,
2011
, “
Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry
,”
Med. Eng. Phys.
,
33
(
1
), pp.
80
88
.10.1016/j.medengphy.2010.09.012
123.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2012
, “
Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms
,”
J. R. Soc. Interface
,
9
(
74
), pp.
2047
2058
.10.1098/rsif.2012.0097
124.
Menzel
,
A.
, and
Waffenschmidt
,
T.
,
2009
, “
A Microsphere-Based Remodelling Formulation For Anisotropic Biological Tissues
,”
Philos. Trans. R. Soc. London, Ser. A
,
367
(
1902
), pp.
3499
3523
.10.1098/rsta.2009.0103
125.
Martufi
G.
, and
Gasser
,
T. C.
,
2012
, “
Histo-Mechanical Modeling of the Wall of Abdominal Aorta Aneurysms
,”
ARGESIM Report No. S38 - Preprints MATHMOD 2012 Vienna - Full Paper Volume, Inge Troch
,
Felix Breitenecker
.
126.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2012
, “
Turnover of Fibrillar Collagen in Soft Biological Tissue With Application to the Expansion of Abdominal Aortic Aneurysms
,”
J. R. Soc. Interface
,
9
(
77
), pp.
3366
3377
.10.1098/rsif.2012.0416
127.
DiMartino
,
E.
,
Mantero
,
S.
, and
Inzoli
,
F.
,
1998
, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation And Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc.
,
15
, pp.
290
299
.10.1016/S1078-5884(98)80031-2
128.
Gasser
,
T. C.
,
Martufi
,
G.
,
Auer
,
M.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
,
2010
, “
Micromechanical Characterization of Intra-Luminal Thrombus Tissue From Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
371
379
.10.1007/s10439-009-9837-4
129.
Armentano
,
R. L.
,
Levenson
,
J.
,
Barra
,
J. G.
,
Fischer
,
E. I.
,
Breitbart
,
G. J.
,
Pichel
,
R. H.
, and
Simon
,
A.
,
1991
, “
Assessment of Elastin and Collagen Contribution to Aortic Elasticity in Conscious Dogs
,”
Am. J. Physiol.
,
260
, pp.
H1870
H1877
.
130.
Greenwald
,
S. E.
,
Moore
, Jr.,
J. E.
,
Rachev
,
A.
,
Kane
,
T. P.
, and
Meister
,
J. J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
J. Biomech. Eng.
,
119
, pp.
438
444
.10.1115/1.2798291
131.
Li
,
Q.
,
Muragaki
,
Y.
,
Hatamura
,
I.
,
Ueno
,
H.
, and
Ooshima
,
A.
,
1998(b)
, “
Stretch-Induced Collagen Synthesis in Cultured Smooth Muscle Cells From Rabbit Aortic Media and a Possible Involvement of Angiotensin II and Transforming Growth Factor-Beta
,”
J. Vasc. Res.
,
35
, pp.
93
103
.10.1159/000025570
132.
Taylor
,
C. A.
, and
Humphrey
,
J. D.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3514
3523
.10.1016/j.cma.2009.02.004
133.
Federico
,
S.
, and
Gasser
,
T. C.
,
2010
, “
Nonlinear Elasticity of Biological Tissues With Statistical Fiber Orientation
,”
J. R. Soc. Interface
,
7
(
47
), pp.
955
966
.10.1098/rsif.2009.0502
134.
Gasser
,
T. C.
, and
Forsell
,
C.
,
2011(b)
, “
The Numerical Implementation of Invariant-Based Viscoelastic Formulations at Finite Strains. An Anisotropic Model for the Passive Myocardium
,”
Comput. Methods Appl. Mech.
,
200
, pp.
3637
3645
.10.1016/j.cma.2011.08.022
135.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2002
, “
A Rate-Independent Elastoplastic Constitutive Model for (Biological) Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation
,”
Comput. Mech.
,
29
, pp.
340
360
.10.1007/s00466-002-0347-6
You do not currently have access to this content.