The mitral valve is a complex apparatus with multiple constituents that work cohesively to ensure unidirectional flow between the left atrium and ventricle. Disruption to any or all of the components—the annulus, leaflets, chordae, and papillary muscles—can lead to backflow of blood, or regurgitation, into the left atrium, which deleteriously effects patient health. Through the years, a myriad of surgical repairs have been proposed; however, a careful appreciation for the underlying structural mechanics can help optimize long-term repair durability and inform medical device design. In this review, we aim to present the experimental methods and significant results that have shaped the current understanding of mitral valve mechanics. Data will be presented for all components of the mitral valve apparatus in control, pathological, and repaired conditions from human, animal, and in vitro studies. Finally, current strategies of patient specific and noninvasive surgical planning will be critically outlined.

References

References
1.
Savage
,
E. B.
, and
Bolling
,
S. F.
,
2005
,
Atlas of Mitral Valve Repair
,
Lippincott Williams & Wilkins
,
New York
.
2.
Carpentier
,
A.
,
Adams
,
D. H.
, and
Filsoufi
,
F.
,
2010
,
Carpentier's Reconstructive Valve Surgery
,
Saunders
,
Philadelphia, PA
.
3.
Ormiston
,
J. A.
,
Shah
,
P. M.
,
Tei
,
C.
, and
Wong
,
M.
,
1981
, “
Size and Motion of the Mitral Valve Annulus in Man. I. A Two-Dimensional Echocardiographic Method and Findings in Normal Subjects
,”
Circulation
,
64
, pp.
113
120
.10.1161/01.CIR.64.1.113
4.
Chan
,
J. K. M.
,
Merrifield
,
R.
,
Wage
,
R. R.
,
Symmonds
,
K.
,
Cannell
,
T.
,
Firmin
,
D. N.
,
Pepper
,
J. R.
,
Pennell
,
D. J.
, and
Kilner
,
P. J.
,
2008
, “
Two-Dimensional M-Mode Display of the Mitral Valve From CMR Cine Acquisitions: Insights Into Normal Leaflet and Annular Motion
,”
J. Cardiovasc. Magn. Reson.
,
10
, Paper No.
A351
.10.1186/1532-429X-10-S1-A351
5.
Boltwood
,
C. M.
,
Tei
,
C.
,
Wong
,
M.
, and
Shah
,
P. M.
,
1983
, “
Quantitative Echocardiography of the Mitral Complex in Dilated Cardiomyopathy: The Mechanism of Functional Mitral Regurgitation
,”
Circulation
,
68
, pp.
498
508
.10.1161/01.CIR.68.3.498
6.
Levine
,
R. A.
,
Triulzi
,
M. O.
,
Harrigan
,
P.
, and
Weyman
,
A. E.
,
1987
, “
The Relationship of Mitral Annular Shape to the Diagnosis of Mitral Valve Prolapse
,”
Circulation
,
75
, pp.
756
767
.10.1161/01.CIR.75.4.756
7.
Ahmad
,
R. M.
,
Gillinov
,
A. M.
,
Mccarthy
,
P. M.
,
Blackstone
,
E. H.
,
Apperson-Hansen
,
C.
,
Qin
,
J. X.
,
Agler
,
D.
,
Shiota
,
T.
, and
Cosgrove
,
D. M.
,
2004
, “
Annular Geometry and Motion in Human Ischemic Mitral Regurgitation: Novel Assessment With Three-Dimensional Echocardiography and Computer Reconstruction
,”
Ann. Thorac. Surg.
,
78
, pp.
2063
2068
.10.1016/j.athoracsur.2004.06.016
8.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J. P.
,
Swanson
,
J. C.
,
Ingels
,
N. B.
, Jr.
,
Miller
,
D. C.
, and
Kuhl
,
E.
,
2011
, “
Characterization of Mitral Valve Annular Dynamics in the Beating Heart
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1690
1702
.10.1007/s10439-011-0272-y
9.
Gorman
J. H.
, III
,
Jackson
,
J. B.
,
Moainie
,
S. L.
,
Enomoto
,
Y.
, and
Gorman
,
R. C.
,
2004
, “
Influence of Inotropy and Chronotropy on the Mitral Valve Sphincter Mechanism
,”
Ann. Thorac. Surg.
,
77
, pp.
852
858
.10.1016/j.athoracsur.2003.08.050
10.
Yiu
,
S. F.
,
Enriquez-Sarano
,
M.
,
Tribouilloy
,
C.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
,
2000
, “
Determinants of the Degree of Functional Mitral Regurgitation in Patients With Systolic Left Ventricular Dysfunction: A Quantitative Clinical Study
,”
Circulation
,
102
(
12
), pp.
1400
1406
.10.1161/01.CIR.102.12.1400
11.
Veronesi
,
F.
,
Corsi
,
C.
,
Sugeng
,
L.
,
Caiani
,
E. G.
,
Weinert
,
L.
,
Mor-Avi
,
V.
,
Cerutti
,
S.
,
Lamberti
,
C.
, and
Lang
,
R. M.
,
2008
, “
Quantification of Mitral Apparatus Dynamics in Functional and Ischemic Mitral Regurgitation Using Real-Time 3-Dimensional Echocardiography
,”
J. Am. Soc. Echocardiogr.
,
21
, pp.
347
354
.10.1016/j.echo.2007.06.017
12.
Timek
,
T. A.
,
Green
,
G. R.
,
Tibayan
,
F. A.
,
Lai
,
D. T.
,
Rodriguez
,
F.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Ingels
,
J. N. B.
, and
Miller
,
D. C.
,
2003
, “
Aorto-Mitral Annular Dynamics
,”
Ann. Thorac. Surg.
,
76
(
6
), pp.
1944
1950
.10.1016/S0003-4975(03)01078-6
13.
Levine
,
R. A.
,
Handschumacher
,
M. D.
,
Sanfilippo
,
A. J.
,
Hagege
,
A. A.
,
Harrigan
,
P.
,
Marshall
,
J. E.
, and
Weyman
,
A. E.
,
1989
, “
Three-Dimensional Echocardiographic Reconstruction of the Mitral Valve, With Implications for the Diagnosis of Mitral Valve Prolapse
,”
Circulation
,
80
(
3
), pp.
589
598
.10.1161/01.CIR.80.3.589
14.
Gorman
,
J. H.
, III
,
Jackson
,
B. M.
,
Enomoto
,
Y.
, and
Gorman
,
R. C.
,
2004
, “
The Effect of Regional Ischemia on Mitral Valve Annular Saddle Shape
,”
Ann. Thorac. Surg.
,
77
(
2
), pp.
544
548
.10.1016/S0003-4975(03)01354-7
15.
Tibayan
,
F. A.
,
Rodriguez
,
F.
,
Langer
,
F.
,
Zasio
,
M. K.
,
Bailey
,
L.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2003
, “
Annular Remodeling in Chronic Ischemic Mitral Regurgitation: Ring Selection Implications
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1549
1555
.10.1016/S0003-4975(03)00880-4
16.
Ryan
,
L. P.
,
Jackson
,
B. M.
,
Hamamoto
,
H.
,
Eperjesi
,
T. J.
,
Plappert
,
T. J.
,
St John-Sutton
,
M.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2008
, “
The Influence of Annuloplasty Ring Geometry on Mitral Leaflet Curvature
,”
Ann. Thorac. Surg.
,
86
(
3
), pp.
749
760
.10.1016/j.athoracsur.2008.03.079
17.
Komoda
,
T.
,
Hetzer
,
R.
,
Oellinger
,
J.
,
Henryk
,
S.
,
Hofmeister
,
J.
,
Hübler
,
M.
,
Felix
,
R.
,
Uyama
,
C.
, and
Maeta
,
H.
,
1997
, “
Mitral Annular Flexibility
,”
J. Cardiothorac. Surg.
,
12
, pp.
102
109
.10.1111/j.1540-8191.1997.tb00103.x
18.
Itoh
,
A.
,
Ennis
,
D. B.
,
Bothe
,
W.
,
Swanson
,
J. C.
,
Krishnamurthy
,
G.
,
Nguyen
,
T. C.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
,
2009
, “
Mitral Annular Hinge Motion Contribution to Changes in Mitral Septal-Lateral Dimension and Annular Area
,”
J. Thorac. Cardiovasc. Surg.
,
138
(
5
), pp.
1090
1099
.10.1016/j.jtcvs.2009.03.067
19.
Kaplan
,
S. R.
,
Bashein
,
G.
,
Sheehan
,
F.
,
Legget
,
M.
,
Munt
,
B.
,
Li
,
X.-N.
,
Sivarajan
,
M.
,
Bolson
,
E.
,
Zeppa
,
M.
,
Archa
,
M.
, and
Martin
,
R. W.
,
2000
, “
Three-Dimensional Echocardiographic Assessment of Annular Shape Changes in the Normal and Regurgitant Valve
,”
Am. Heart J.
,
139
, pp.
378
387
.10.1016/S0002-8703(00)90077-2
20.
Salgo
,
I. S.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
,
Jackson
,
B.
,
Bowen
,
F. W.
,
Plappert
,
T.
,
St John Sutton
,
M. G.
, and
Edmunds
,
L. H.
, Jr.
,
2002
, “
Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress
,”
Circulation
,
106
(
6
), pp.
711
717
.10.1161/01.CIR.0000025426.39426.83
21.
Gorman
,
J. H.
Gorman
,
R. C.
Jackson
,
B. M.
Enomoto
,
Y.
St. John-Sutton
,
M. G.
and
Edmunds
,
L. H.
, Jr
.,
2003
, “
Annuloplasty Ring Selection for Chronic Ischemic Mitral Regurgitation: Lessons From the Ovine Model
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1556
1563
.10.1016/S0003-4975(03)00891-9
22.
Jimenez
,
J. H.
,
Liou
,
S. W.
,
Padala
,
M.
,
He
,
Z.
,
Sacks
,
M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Yoganathan
,
A. P.
,
2007
, “
A Saddle-Shaped Annulus Reduces Systolic Strain on the Central Region of the Mitral Valve Anterior Leaflet
,”
J. Thorac. Cardiovasc. Surg.
,
134
(
6
), pp.
1562
1568
.10.1016/j.jtcvs.2007.08.037
23.
Padala
,
M.
,
Hutchison
,
R. A.
,
Croft
,
L. R.
,
Jimenez
,
J. H.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2009
, “
Saddle Shape of the Mitral Annulus Reduces Systolic Strains on the P2 Segment of the Posterior Mitral Leaflet
,”
Ann, Thorac. Surg.
,
88
(
5
), pp.
1499
1504
.10.1016/j.athoracsur.2009.06.042
24.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
He
,
S.
, and
Yoganathan
,
A. P.
,
2003
, “
Effects of a Saddle Shaped Annulus on Mitral Valve Function and Chordal Force Distribution: An In Vitro Study
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1171
1181
.10.1114/1.1616929
25.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J. P.
,
Swanson
,
J. C.
,
Miller
,
D. C.
, and
Kuhl
,
E.
,
2012
, “
Mitral Valve Annuloplasty: A Quantitative Clinical and Mechanical Comparison of Different Annuloplasty Devices
,”
Ann. Biomed. Eng.
,
40
(
3
), pp.
750
761
.10.1007/s10439-011-0442-y
26.
Hasenkam
,
J. M.
,
Nygaard
,
H.
,
Paulsen
,
P. K.
,
Kim
,
W. Y.
, and
Hansen
,
O. K.
,
1994
, “
What Force Can the Myocardium Generate on a Prosthetic Mitral Valve Ring?
,”
J. Heart Valve Dis.
,
3
, pp.
324
329
.
27.
Shandas
,
R.
,
Mitchell
,
M.
,
Conrad
,
C.
,
Knudson
,
O.
,
Sorrell
,
J.
,
Mahalingam
,
S.
,
Fragoso
,
M.
, and
Valdes-Cruz
,
L.
,
2001
, “
A General Method for Estimating Deformation and Forces Imposed In Vivo on Bioprosthetic Heart Valves With Flexible Annuli: In Vitro and Animal Validation Studies
,”
J. Heart Valve Dis.
,
10
, pp.
495
504
.
28.
Siefert
,
A. W.
,
Jimenez
,
J. H.
,
Koomalsingh
,
K. J.
,
West
,
D. S.
,
Aguel
,
F.
,
Shuto
,
T.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Yoganathan
,
A. P.
,
2012
, “
Dynamic Assessment of Mitral Annular Force Profile in an Ovine Model
,”
Ann. Thorac. Surg.
,
94
(
1
), pp.
59
65
.10.1016/j.athoracsur.2012.02.074
29.
Siefert
,
A. W.
,
Jimenez
,
J. H.
,
West
,
D. S.
,
Koomalsingh
,
K. J.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Yoganathan
,
A. P.
,
2012
, “
In-Vivo Transducer to Measure Dynamic Mitral Annular Forces
,”
J. Biomech.
,
45
(
8
), pp.
1514
1516
.10.1016/j.jbiomech.2012.03.009
30.
Siefert
,
A. W.
,
Jimenez
,
J. H.
,
Koomalsingh
,
K. J.
,
Aguel
,
F.
,
West
,
D. S.
,
Shuto
,
T.
,
Snow
,
T. K.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Yoganathan
,
A. P.
,
2012
, “
Contractile Mitral Annular Forces are Reduced With Ischemic Mitral Regurgitation
,”
J. Thorac. Cardiovasc. Surg.
(in press).
31.
Jensen
,
M. O.
,
Jensen
,
H.
,
Smerup
,
M.
,
Levine
,
R. A.
,
Yoganathan
,
A. P.
,
Nygaard
,
H.
,
Hasenkam
,
J. M.
, and
Nielsen
,
S. L.
,
2008
, “
Saddle-Shaped Mitral Valve Annuloplasty Rings Experience Lower Forces Compared With Flat Rings
,”
Circulation
,
118
(
14 Suppl
), pp.
S250
S255
.10.1161/CIRCULATIONAHA.107.746776
32.
Jensen
,
M. Ø.
,
Jensen
,
H.
,
Nielsen
,
S. L.
,
Smerup
,
M.
,
Johansen
,
P.
,
Yoganathan
,
A. P.
Nygaard
,
H.
, and
Hasenkam
,
J. M.
,
2008
, “
What Forces Act on a Flat Rigid Mitral Annuloplasty Ring?
,”
J. Heart Valve Dis.
,
17
, pp.
267
275
.
33.
Gillinov
,
A. M.
,
Blackstone
,
E.
,
White
,
J.
,
Howard
,
M.
,
Ahkrass
,
R.
,
Marullo
,
A.
, and
Cosgrove
,
D. M.
,
2001
, “
Durability of Combined Aortic and Mitral Valve Repair
,”
Ann. Thorac. Surg.
,
72
, pp.
20
27
.10.1016/S0003-4975(01)02677-7
34.
He
,
S.
,
Jimenez
,
J.
,
He
,
Z.
, and
Yoganathan
,
A. P.
,
2003
, “
Mitral Leaflet Geometry Perturbations With Papillary Muscle Displacement and Annular Dilatation: An In-Vitro Study of Ischemic Mitral Regurgitation
,”
J. Heart Valve Dis.
,
12
(
3
), pp.
300
-
307
.
35.
Grande-Allen
,
K. J.
, and
Liao
,
J.
,
2011
, “
The Heterogeneous Biomechanics and Mechanobiology of the Mitral Valve: Implications for Tissue Engineering
,”
Curr. Cardiol. Rep.
,
13
(
2
), pp.
113
120
.10.1007/s11886-010-0161-2
36.
Fenoglio
,
J. J.
, Jr.
,
Tuan-Duc-Pham
,
Wit
,
A. L.
,
Bassett
,
A. L.
, and
Wagner
,
B. M.
,
1972
, “
Canine Mitral Complex. Ultrastructure and Electromechanical Properties
,”
Circ. Res.
,
31
(
3
), pp.
417
430
.10.1161/01.RES.31.3.417
37.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Chuong
,
C.
,
Ring
,
W. S.
,
Verrier
,
E. D.
, and
Eberhart
,
R. D.
,
1993
, “
Finite Element Analysis of the Mitral Valve
,”
J. Heart Valve Dis.
,
2
(
3
), pp.
326
340
.
38.
Grande-Allen
,
K. J.
,
Calabro
,
A.
,
Gupta
,
V.
,
Wight
,
T. N.
,
Hascall
,
V. C.
, and
Vesely
,
I.
,
2004
, “
Glycosaminoglycans and Proteoglycans in Normal Mitral Valve Leaflets and Chordae: Association with Regions of Tensile and Compressive Loading
,”
Glycobiology
,
14
(
7
), pp.
621
633
.10.1093/glycob/cwh076
39.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Murphree
,
S.
,
Ring
,
W.
,
Verrier
,
E.
, and
Eberhart
,
R.
,
1993
, “
Differential Collagen Distribution in the Mitral Valve and its Influence on Biomechanical Behaviour
,”
J. Heart Valve Dis.
,
2
(
2
), pp.
236
244
.
40.
Kunzelman
,
K. S.
,
Quick
,
D. W.
, and
Cochran
,
R. P.
,
1998
, “
Altered Collagen Concentration in Mitral Valve Leaflets: Biochemical and Finite Element Analysis
,”
Ann. Thorac. Surg.
,
66
(
6 Suppl 1
), pp.
S198
S205
.10.1016/S0003-4975(98)01106-0
41.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
1992
, “
Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation
,”
J. Card. Surg.
,
7
(
1
), pp.
71
78
.10.1111/j.1540-8191.1992.tb00777.x
42.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol. Heart Circ. Physiol.
,
269
(
4
), pp.
H1319
H1327
.
43.
Chen
,
L.
,
Yin
,
F. C.
, and
May-Newman
,
K.
,
2004
, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
J. Biomech. Eng.
,
126
(
2
), pp.
244
251
.10.1115/1.1695569
44.
Imanaka
,
K.
,
Takamoto
,
S.
,
Ohtsuka
,
T.
,
Oka
,
T.
,
Furuse
,
A.
, and
Omata
,
S.
,
2007
, “
The Stiffness of Normal and Abnormal Mitral Valves
,”
Ann. Thorac. Cardiovasc. Surg.
,
13
(
3
), pp.
178
184
.
45.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M. S.
,
2007
, “
The Relation Between Collagen Fibril Kinematics and Mechanical Properties in the Mitral Valve Anterior Leaflet
,”
J. Biomech. Eng.
,
129
(
1
), pp.
78
87
.10.1115/1.2401186
46.
Krishnamurthy
,
G.
,
Ennis
,
D. B.
,
Itoh
,
A.
,
Bothe
,
W.
,
Swanson
,
J. C.
,
Karlsson
,
M.
,
Kuhl
,
E.
,
Miller
,
D. C.
, and
Ingels
,
N. B.
,
2008
, “
Material Properties of the Ovine Mitral Valve Anterior Leaflet In Vivo From Inverse Finite Element Analysis
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
3
), pp.
H1141
H1149
.10.1152/ajpheart.00284.2008
47.
Itoh
,
A.
,
Krishnamurthy
,
G.
,
Swanson
,
J. C.
,
Ennis
,
D. B.
,
Bothe
,
W.
,
Kuhl
,
E.
,
Karlsson
,
M.
,
Davis
,
L. R.
,
Miller
,
D. C.
, and
Ingels
,
N. B.
,
2009
, “
Active Stiffening of Mitral Valve Leaflets in the Beating Heart
,”
Am. J. Physiol. Heart Circ. Physiol.
,
296
(
6
), pp.
H1766
H1773
.10.1152/ajpheart.00120.2009
48.
Krishnamurthy
,
G.
,
Itoh
,
A.
,
Bothe
,
W.
,
Swanson
,
J. C.
,
Kuhl
,
E.
,
Karlsson
,
M.
,
Craig Miller
,
D.
, and
Ingels
,
N. B.
, Jr.
,
2009
, “
Stress–Strain Behavior of Mitral Valve Leaflets in the Beating Ovine Heart
,”
J. Biomech.
,
42
(
12
), pp.
1909
1916
.10.1016/j.jbiomech.2009.05.018
49.
Stephens
,
E. H.
,
de Jonge
,
N.
,
Mcneill
,
M. P.
,
Durst
,
C. A.
, and
Grande-Allen
,
K. J.
,
2010
, “
Age-Related Changes in Material Behavoir of Porcine Mitral and Aortic Valves and Correlation to Matrix Composition
,”
Tissue Eng. Part A
,
16
(
3
), pp.
867
878
.10.1089/ten.tea.2009.0288
50.
Grashow
,
J.
,
Sacks
,
M.
,
Liao
,
J.
, and
Yoganathan
,
A.
,
2006
, “
Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1509
1518
.10.1007/s10439-006-9183-8
51.
Grashow
,
J.
,
Yoganathan
,
A.
, and
Sacks
,
M.
,
2006
, “
Biaxial Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
,
34
(
2
), pp.
315
325
.10.1007/s10439-005-9027-y
52.
Skallerud
,
B.
,
Prot
,
V.
, and
Nordrum
,
I.
,
2011
, “
Modeling Active Muscle Contraction in Mitral Valve Leaflets During Systole: A First Approach
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
11
26
.10.1007/s10237-010-0215-9
53.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
,
2002
, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1281
1290
.10.1114/1.1529194
54.
He
,
Z.
,
Sacks
,
M.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
, and
Yoganathan
,
A. P.
,
2003
, “
Effects of Papillary Muscle Position on In-Vitro Dynami Strain on the Porcine MV
,”
J. Heart Valve Dis.
,
12
(
4
), pp.
488
494
.
55.
He
,
Z.
,
Ritchie
,
J.
,
Grashow
,
J. S.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2005
, “
In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet
,”
J. Biomech. Eng.
,
127
(
3
), pp.
504
511
.10.1115/1.1894385
56.
Sacks
,
M. S.
,
Enomoto
,
Y.
,
Graybill
,
J. R.
,
Merryman
,
W. D.
,
Zeeshan
,
A.
,
Yoganathan
,
A. P.
,
Levy
,
R. J.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2006
, “
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
,”
Ann. Thorac. Surg.
,
82
(
4
), pp.
1369
1377
.10.1016/j.athoracsur.2006.03.117
57.
Bothe
,
W.
,
Swanson
,
J. C.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2010
, “
How Much Septal-Lateral Mitral Annular Reduction Do You Get With New Ischemic/Functional Mitral Regurgitation Annuloplasty Rings?
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
1
), pp.
117
121
.10.1016/j.jtcvs.2009.10.033
58.
Rausch
,
M.
,
Bothe
,
W.
,
Escobar-Kvitting
,
J.-P.
,
Goktepe
,
S.
,
Miller
,
C.
, and
Kuhl
,
E.
,
2011
, “
In-Vivo Dynamic Strains of the Ovine Anterior Mitral Valve Leaflet
,”
J. Biomech.
,
44
(
6
), pp.
1149
1157
.10.1016/j.jbiomech.2011.01.020
59.
Amini
,
R.
,
Eckert
,
C. E.
,
Koomalsingh
,
K.
,
Mcgarvey
,
J.
,
Minakawa
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2012
, “
On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1455
1467
.10.1007/s10439-012-0524-5
60.
Salgo
,
I. S.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Bowen
,
F. W.
,
Plappert
,
T.
,
St John Sutton
,
M. G.
, and
Edmunds
,
L. H.
, Jr.
,
2002
, “
Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress
,”
Circulation
,
106
(
6
), pp.
711
717
.10.1161/01.CIR.0000025426.39426.83
61.
Maurer
,
G.
,
2009
, “
Mitral Leaflet in Functional Regurgitation
,”
Circulation
,
120
(
4
), pp.
275
277
.10.1161/CIRCULATIONAHA.109.879957
62.
Grande-Allen
,
K. J.
,
Barber
,
J. E.
,
Klatka
,
K. M.
,
Houghtaling
,
P. L.
,
Vesely
,
I.
,
Moravec
,
C. S.
, and
Mccarthy
,
P. M.
,
2005
, “
Mitral Valve Stiffening in End-Stage Heart Failure: Evidence of an Organic Contribution to Functional Mitral Regurgitation
,”
Journal of Thorac. Cardiovasc. Surg.
,
130
(
3
), pp.
783
790
.10.1016/j.jtcvs.2005.04.019
63.
Chaput
,
M.
,
Handschumacher
,
M. D.
,
Guerrero
,
J. L.
,
Holmvang
,
G.
,
Dal-Bianco
,
J. P.
,
Sullivan
,
S.
,
Vlahakes
,
G. J.
,
Hung
,
J.
, and
Levine
,
R. A.
,
2009
, “
Mitral Leaflet Adaptation to Ventricular Remodeling
,”
Circulation
,
120
(
11 suppl 1
), pp.
S99
S103
.10.1161/CIRCULATIONAHA.109.844019
64.
Chaput
,
M.
,
Handschumacher
,
M. D.
,
Tournoux
,
F.
,
Hua
,
L.
,
Guerrero
,
J. L.
,
Vlahakes
,
G. J.
, and
Levine
,
R. A.
,
2008
, “
Mitral Leaflet Adaptation to Ventricular Remodeling
,”
Circulation
,
118
(
8
), pp.
845
852
.10.1161/CIRCULATIONAHA.107.749440
65.
Timek
,
T. A.
,
Lai
,
D. T.
,
Dagum
,
P.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2006
, “
Mitral Leaflet Remodeling in Dilated Cardiomyopathy
,”
Circulation
,
114
(
1 suppl
), pp.
I-518
I-523
.10.1161/CIRCULATIONAHA.105.000554
66.
Stephens
,
E. H.
,
Timek
,
T. A.
,
Daughters
,
G. T.
,
Kuo
,
J. J.
,
Patton
,
A. M.
,
Baggett
,
L. S.
,
Ingels
,
N. B.
,
Miller
,
D. C.
, and
Grande-Allen
,
K. J.
,
2009
, “
Significant Changes in Mitral Valve Leaflet Matrix Composition and Turnover With Tachycardia-Induced Cardiomyopathy
,”
Circulation
,
120
(
11 suppl 1
), pp.
S112
S119
.10.1161/CIRCULATIONAHA.108.844159
67.
Stephens
,
E. H.
,
Nguyen
,
T. C.
,
Itoh
,
A.
,
Ingels
,
N. B.
,
Miller
,
D. C.
, and
Grande-Allen
,
K. J.
,
2008
, “
The Effects of Mitral Regurgitation Alone are Sufficient for Leaflet Remodeling
,”
Circulation
,
118
(
14 suppl 1
), pp.
S243
S249
.10.1161/CIRCULATIONAHA.107.757526
68.
Dal-Bianco
,
J. P.
,
Aikawa
,
E.
,
Bischoff
,
J.
,
Guerrero
,
J. L.
,
Handschumacher
,
M. D.
,
Sullivan
,
S.
,
Johnson
,
B.
,
Titus
,
J. S.
,
Iwamoto
,
Y.
,
Wylie-Sears
,
J.
,
Levine
,
R. A.
, and
Carpentier
,
A.
,
2009
, “
Active Adaptation of the Tethered Mitral Valve
,”
Circulation
,
120
(
4
), pp.
334
342
.10.1161/CIRCULATIONAHA.108.846782
69.
Rausch
,
M. K.
,
Tibayan
,
F. A.
,
Craig Miller
,
D.
, and
Kuhl
,
E.
,
2012
, “
Evidence of Adaptive Mitral Leaflet Growth
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
208
217
.10.1016/j.jmbbm.2012.07.001
70.
Lam
,
J. H.
,
Ranganathan
,
N.
,
Wigle
,
E. D.
, and
Silver
,
M. D.
,
1970
, “
Morphology of the Human Mitral Valve. I. Chordae Tendineae: A New Classification
,”
Circulation
,
41
(
3
), pp.
449
458
.10.1161/01.CIR.41.3.449
71.
Ranganathan
,
N.
,
Lam
,
J. H.
,
Wigle
,
E. D.
, and
Silver
,
M. D.
,
1970
, “
Morphology of the Human Mitral Valve. II. The Valve Leaflets
,”
Circulation
,
41
(
3
), pp.
459
467
.10.1161/01.CIR.41.3.459
72.
Liao
,
J.
, and
Vesely
,
I.
,
2003
, “
A Structural Basis for the Size-Related Mechanical Properties of Mitral Valve Chordae Tendineae
,”
J. Biomech.
,
36
(
8
), pp.
1125
1133
.10.1016/S0021-9290(03)00109-X
73.
Sedransk
,
K. L.
,
Grande-Allen
,
K. J.
, and
Vesely
,
I.
,
2002
, “
Failure Mechanics of Mitral Valve Chordae Tendineae
,”
J. Heart Valve Dis.
,
11
(
5
), pp.
644
650
.
74.
Ritchie
,
J.
,
Jimenez
,
J.
,
He
,
Z.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2006
, “
The Material Properties of the Native Porcine Mitral Valve Chordae Tendineae: An In Vitro Investigation.
,”
J. Biomech.
,
39
(
6
), pp.
1129
1135
.10.1016/j.jbiomech.2005.01.024
75.
Lim
,
K. O.
, and
Boughner
,
D. R.
,
1976
, “
Morphology and Relationship to Extensibility Curves of Human Mitral Valve Chordae Tendineae
,”
Circ. Res.
,
39
(
4
), pp.
580
585
.10.1161/01.RES.39.4.580
76.
Millington-Sanders
,
C.
,
Meir
,
A.
,
Lawrence
,
L.
, and
Stolinski
,
C.
,
1998
, “
Structure of Chordae Tendineae in the Left Ventricle of the Human Heart
,”
J. Anat.
,
192
(
4
), pp.
573
581
.10.1046/j.1469-7580.1998.19240573.x
77.
He
,
S.
,
Weston
,
M. W.
,
Lemmon
,
J.
,
Jensen
,
M.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
,
2000
, “
Geometric Distribution of Chordae Tendineae: An Important Anatomic Feature in Mitral Valve Function
,”
J. Heart Valve Dis.
,
9
(
4
), pp.
495
501
.
78.
Obadia
,
J. F.
,
Casali
,
C.
,
Chassignolle
,
J. F.
, and
Janier
,
M.
,
1997
, “
Mitral Subvalvular Apparatus: Different Functions of Primary and Secondary Chordae
,”
Circulation
,
96
(
9
), pp.
3124
3128
.10.1161/01.CIR.96.9.3124
79.
Goetz
,
W. A.
,
Lim
,
H.-S.
,
Lansac
,
E.
,
Weber
,
P. A.
,
Birnbaum
,
D. E.
, and
Duran
,
C. M. G.
,
2003
, “
The Aortomitral Angle is Suspended by the Anterior Mitral Basal ‘Stay’ Chords
,”
Thorac. Cardiovasc. Surg.
,
51
(
4
), pp.
190
195
.10.1055/s-2003-42261
80.
Clark
,
R. E.
,
1973
, “
Stress-Strain Characteristics of Fresh and Frozen Human Aortic and Mitral Leaflets and Chordae Tendineae. Implications for Clinical Use
,”
J. Thorac. Cardiovasc. Surg.
,
66
(
2
), pp.
202
208
.
81.
Lim
,
K. O.
, and
Boughner
,
D. R.
,
1975
, “
Mechanical Properties of Human Mitral Valve Chordae Tendineae: Variation With Size and Strain Rate
,”
Can. J. Physiol. Pharmacol.
,
53
(
3
), pp.
330
339
.10.1139/y75-048
82.
Lim
,
K. O.
,
Boughner
,
D. R.
, and
Smith
,
C. A.
,
1977
, “
Dynamic Elasticity of Human Mitral Valve Chordae Tendinease
,”
Can. J. Physiol. Pharmacol.
,
55
(
3
), pp.
413
418
.10.1139/y77-058
83.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
1990
, “
Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae
,”
ASAIO Trans.
,
36
(
3
), pp.
M405
M408
.
84.
Salisbury
,
P. F.
,
Cross
,
C. E.
, and
Rieben
,
P. A.
,
1963
, “
Chorda Tendinea Tension
,”
Am. J. Physiol.
,
205
, pp.
385
392
.
85.
Nielsen
,
S. L.
,
Soerensen
,
D. D.
,
Libergren
,
P.
,
Yoganathan
,
A. P.
, and
Nygaard
,
H.
,
2004
, “
Miniature C-Shaped Transducers for Chordae Tendineae Force Measurements
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1050
1057
.10.1114/B:ABME.0000036641.69903.62
86.
Lomholt
,
M.
,
Nielsen
,
S. L.
,
Hansen
,
S. B.
,
Andersen
,
N. T.
, and
Hasenkam
,
J. M.
,
2002
, “
Differential Tension Between Secondary and Primary Mitral Chordae in an Acute In-Vivo Porcine Model
,”
J. Heart Valve Dis.
,
11
(
3
), pp.
337
345
.
87.
Nielsen
,
S. L.
,
Hansen
,
S. B.
,
Nielsen
,
K. O.
,
Nygaard
,
H.
,
Paulsen
,
P. K.
, and
Hasenkam
,
J. M.
,
2005
, “
Imbalanced Chordal Force Distribution Causes Acute Ischemic Mitral Regurgitation: Mechanistic Insights From Chordae Tendineae Force Measurements in Pigs
,”
J. Thorac. Cardiovasc. Surg.
,
129
(
3
), pp.
525
531
.10.1016/j.jtcvs.2004.07.044
88.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
,
Andersen
,
N. T.
, and
Yoganathan
,
A. P.
,
1999
, “
Chordal Force Distribution Determines Systolic Mitral Leaflet Configuration and Severity of Functional Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
,
33
(
3
), pp.
843
853
.10.1016/S0735-1097(98)00627-5
89.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Mandrup
,
L.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
, and
Yoganathan
,
A. P.
,
2002
, “
Mechanism of Incomplete Mitral Leaflet Coaptation—Interaction of Chordal Restraint and Changes in Mitral Leaflet Coaptation Geometry. Insight From In Vitro Validation of the Premise of Force Equilibrium
,”
J. Biomech. Eng.
,
124
(
5
), pp.
596
608
.10.1115/1.1500741
90.
Nielsen
,
S. L.
,
Timek
,
T. A.
,
Green
,
G. R.
,
Dagum
,
P.
,
Daughters
,
G. T.
,
Hasenkam
,
J. M.
,
Bolger
,
A. F.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2003
, “
Influence of Anterior Mitral Leaflet Second-Order Chordae Tendineae on Left Ventricular Systolic Function
,”
Circulation
,
108
(
4
), pp.
486
491
.10.1161/01.CIR.0000080504.70265.05
91.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
Ritchie
,
J.
, and
Yoganathan
,
A. P.
,
2005
, “
Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In Vitro Study.
,”
Ann. Biomed. Eng.
,
33
(
5
), pp.
557
566
.10.1007/s10439-005-1512-9
92.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
Ritchie
,
J.
, and
Yoganathan
,
A. P.
,
2005
, “
Effects of Papillary Muscle Position on Chordal Force Distribution: An In-Vitro Study
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
295
302
.
93.
Jimenez-Mejia
,
J. H.
,
2003
, “
The Effects of Mitral Annular Dynamics and Papillary Muscle Position of Chordal Force Distribution and Valve Function: An In Vitro Study
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
94.
Granier
,
M.
,
Jensen
,
M. O.
,
Honge
,
J. L.
,
Bel
,
A.
,
Menasché
,
P.
,
Nielsen
,
S. L.
,
Carpentier
,
A.
,
Levine
,
R. A.
, and
Hagège
,
A. A.
,
2011
, “
Consequences of Mitral Valve Prolapse on Chordal Tension: Ex Vivo and In Vivo Studies in Large Animal Models
,”
J. Thorac. Cardiovasc. Surg.
,
142
(
6
), pp.
1585
1587
.10.1016/j.jtcvs.2011.08.035
95.
He
,
Z.
, and
Jowers
,
C.
,
2009
, “
A Novel Method to Measure Mitral Valve Chordal Tension
,”
J. Biomech. Eng.
,
131
(
1
), p.
014501
.10.1115/1.3005160
96.
He
,
S.
,
Fontaine
,
A. A.
,
Schwammenthal
,
E.
,
Yoganathan
,
A. P.
, and
Levine
,
R. A.
,
1997
, “
Integrated Mechanism for Functional Mitral Regurgitation: Leaflet Restriction Versus Coapting Force: In Vitro Studies
,”
Circulation
,
96
(
6
), pp.
1826
1834
.10.1161/01.CIR.96.6.1826
97.
Padala
,
M.
,
Gyoneva
,
L.
, and
Yoganathan
,
A. P.
,
2012
, “
Effect of Anterior Strut Chordal Transection on the Force Distribution on the Marginal Chordae of the Mitral Valve
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
3
), pp.
624
633
.10.1016/j.jtcvs.2011.10.032
98.
Nielsen
,
S. L.
,
Lomholt
,
M.
,
Johansen
,
P.
,
Hansen
,
S. B.
,
Andersen
,
N. T.
, and
Hasenkam
,
J. M.
,
2011
, “
Mitral Ring Annuloplasty Relieves Tension of the Secondary but Not Primary Chordae Tendineae in the Anterior Mitral Leaflet
,”
J. Thorac. Cardiovasc. Surg.
,
141
(
3
), pp.
732
737
.10.1016/j.jtcvs.2010.05.011
99.
Ostli
,
B.
,
Vester-Petersen
,
J.
,
Askov
,
J. B.
,
Honge
,
J. L.
,
Levine
,
R. A.
,
Hagège
,
A.
,
Nielsen
,
S. L.
,
Hasenkam
,
J. M.
,
Nygaard
,
H.
, and
Jensen
,
M. O.
,
2012
, “
In Vitro System for Measuring Chordal Force Changes Following Mitral Valve Patch Repair
,”
Cardiovasc. Eng. Technol.
,
3
(
3
), pp.
263
268
.10.1007/s13239-012-0098-2
100.
Messas
,
E.
,
Guerrero
,
J. L.
,
Handschumacher
,
M. D.
,
Conrad
,
C.
,
Chow
,
C. M.
,
Sullivan
,
S.
,
Yoganathan
,
A. P.
, and
Levine
,
R. A.
,
2001
, “
Chordal Cutting: A New Therapeutic Approach for Ischemic Mitral Regurgitation
,”
Circulation
,
104
(
16
), pp.
1958
1963
.10.1161/hc4201.097135
101.
He
,
Z.
, and
Jowers
,
C. W.
,
2008
, “
Effect of Mitral Valve Strut Chord Cutting on Marginal Chord Tension
,”
J. Heart Valve Dis.
,
17
(
6
), pp.
628
634
.
102.
Quill
,
J. L.
,
Hill
,
A. J.
,
Laske
,
T. G.
,
Alfieri
,
O.
, and
Iaizzo
,
P. A.
,
2009
, “
Mitral Leaflet Anatomy Revisited
,”
J. Thorac. Cardiovasc. Surg.
,
137
, pp.
1077
1081
.10.1016/j.jtcvs.2008.10.008
103.
Degandt
,
A. A.
,
Weber
,
P. A.
,
Saber
,
H. A.
, and
Duran
,
C. M. G.
,
2007
, “
Mitral Valve Basal Chordae: Comparative Anatomy and Terminology
,”
Ann. Thorac. Surg.
,
84
, pp.
1250
1255
.10.1016/j.athoracsur.2007.05.008
104.
Anderson
,
R. H.
, and
Kanani
,
M.
,
2007
, “
Mitral Valve Repair: Critical Analysis of the Anatomy Discussed
,”
Multimedia Manual Cardiothoracic Surg.
,
0219
, pp.
1
9
.10.1510/mmcts.2006.002147
105.
Joudinaud
,
T. M.
,
Kegel
,
C. L.
,
Flecher
,
E. M.
,
Weber
,
P. A.
,
Lansac
,
E.
,
Hvass
,
U.
, and
Duran
,
C. M. G.
,
2007
, “
The Papillary Muscles as Shock Absorbers of the Mitral Valve Complex. An Experimental Study
,”
Eur. J. Cardiothorac. Surg.
,
32
(
1
), pp.
96
101
.10.1016/j.ejcts.2007.03.043
106.
Gorman
,
J. H.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Hiramatsu
,
Y.
,
Gikakis
,
N.
,
Kelley
,
S. T.
,
Sutton
,
M. G.
,
Plappert
,
T.
, and
Edmunds
,
L. H.
,
1997
, “
Distortions of the Mitral Valve in Acute Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
64
(
4
), pp.
1026
1031
.10.1016/S0003-4975(97)00850-3
107.
Madu
,
E. C.
,
Baugh
,
D. S.
,
D'Cruz
,
I. A.
, and
Johns
,
C.
,
2001
, “
Left Ventricular Papillary Muscle Morphology and Function in Left Ventricular Hypertrophy and Left Ventricular Dysfunction
,”
Med. Sci. Monit.
,
7
(
6
), pp.
1212
1218
.
108.
Hashim
,
S. R.
,
Fontaine
,
A.
,
He
,
S.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
,
1997
, “
A Three-Component Force Vector Cell for In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall
,”
J. Biomech
,
30
(
10
), pp.
1071
1075
.10.1016/S0021-9290(97)00066-3
109.
Jensen
,
M. Ø. J.
,
Fontaine
,
A. A.
, and
Yoganathan
,
A. P.
,
2001
, “
Improved In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall: Three-Dimensional Force Vector Measurement System
,”
Ann. Biomed. Eng.
,
29
(
5
), pp.
406
413
.10.1114/1.1366672
110.
Askov
,
J. B.
,
Honge
,
J. L.
,
Jensen
,
M. O.
,
Nygaard
,
H.
,
Hasenkam
,
J. M.
, and
Nielsen
,
S. L.
,
2012
, “
Significance of Force Transfer in Mitral Valve-Left Ventricular Interaction: In Vivo Assessment
,”
J. Thorac. Cardiovasc. Surg.
(in press).
111.
Wong
,
V. M.
,
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
,
Guccione
,
J. M.
,
Ratcliffe
,
M. B.
, and
Ge
,
L.
,
2012
, “
The Effect of Mitral Annuloplasty Shape in Ischemic Mitral Regurgitation: A Finite Element Simulation
,”
Ann. Thorac. Surg.
,
93
(
3
), pp.
776
782
.10.1016/j.athoracsur.2011.08.080
112.
Prot
,
V.
,
Haaverstad
,
R.
, and
Skallerud
,
B.
,
2009
, “
Finite Element Analysis of the Mitral Apparatus: Annulus Shape Effect and Chordal Force Distribution
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
43
55
.10.1007/s10237-007-0116-8
113.
Votta
,
E.
,
Maisano
,
F.
,
Bolling
,
S. F.
,
Alfieri
,
O.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2007
, “
The Geoform Disease-Specific Annuloplasty System: A Finite Element Study
,”
Ann. Thorac. Surg.
,
84
(
1
), pp.
92
101
.10.1016/j.athoracsur.2007.03.040
114.
Mansi
,
T.
,
Voigt
,
I.
,
Georgescu
,
B.
,
Zheng
,
X.
,
Mengue
,
E. A.
,
Hackl
,
M.
,
Ionasec
,
R. I.
,
Noack
,
T.
,
Seeburger
,
J.
, and
Comaniciu
,
D.
,
2012
, “
An Integrated Framework for Finite-Element Modeling of Mitral Valve Biomechanics from Medical Images: Application to Mitralclip Intervention Planning
,”
Med. Image Anal.
,
16
(
7
), pp.
1330
1346
.10.1016/j.media.2012.05.009
115.
Avanzini
,
A.
,
2008
, “
A Computational Procedure for Prediction of Structural Effects of Edge-To-Edge Repair on Mitral Valve
,”
J. Biomech. Eng.
,
130
(
3
),
031015
.10.1115/1.2913235
116.
Reimink
,
M. S.
,
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
1996
, “
The Effect of Chordal Replacement Suture Length on Function and Stresses in Repaired Mitral Valves: A Finite Element Study
,”
J. Heart Valve Dis.
,
5
(
4
), pp.
365
375
.
117.
Kunzelman
,
K.
,
Reimink
,
M. S.
,
Verrier
,
E. D.
, and
Cochran
,
R. P.
,
1996
, “
Replacement of Mitral Valve Posterior Chordae Tendineae With Expanded Polytetrafluoroethylene Suture: A Finite Element Study
,”
J. Card. Surg.
,
11
(
2
), pp.
136
145
.10.1111/j.1540-8191.1996.tb00028.x
118.
Xu
,
C.
,
Brinster
,
C. J.
,
Jassar
,
A. S.
,
Vergnat
,
M.
,
Eperjesi
,
T. J.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Jackson
,
B. M.
,
2010
, “
A Novel Approach to In Vivo Mitral Valve Stress Analysis
,”
Am. J. Physiol.
,
299
(
6
), pp.
H1790
H1794
.10.1152/ajpcell.00081.2010
119.
Votta
,
E.
,
Caiani
,
E.
,
Veronesi
,
F.
,
Soncini
,
M.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2008
, “
Mitral Valve Finite-Element Modelling From Ultrasound Data: A Pilot Study for a New Approach to Understand Mitral Function and Clinical Scenarios
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1879
), pp.
3411
3434
.10.1098/rsta.2008.0095
120.
Wang
,
Q.
, and
Sun
,
W.
,
2013
, “
Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
142
153
.10.1007/s10439-012-0620-6
121.
Lim
,
K.
,
Yeo
,
J.
, and
Duran
,
C. M.
,
2005
, “
Three-Dimensional Asymmetrical Modeling of the Mitral Valve: A Finite Element Study With Dynamic Boundaries
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
386
392
.
122.
Stevanella
,
M.
,
Votta
,
E.
, and
Redaelli
,
A.
,
2009
, “
Mitral Valve Finite Element Modeling: Implications of Tissues' Nonlinear Response and Annular Motion
,”
J. Biomech. Eng.
,
131
(
12
), p.
121010
.10.1115/1.4000107
123.
Padala
,
M.
,
Sacks
,
M. S.
,
Liou
,
S. W.
,
Balachandran
,
K.
,
He
,
Z.
, and
Yoganathan
,
A. P.
,
2010
, “
Mechanics of the Mitral Valve Strut Chordae Insertion Region
,”
J. Biomech. Eng.
,
132
(
8
), p.
081004
.10.1115/1.4001682
124.
Cochran
,
R. P.
, and
Kunzelman
,
K. S.
,
1998
, “
Effect of Papillary Muscle Position on Mitral Valve Function: Relationship to Homografts
,”
Ann. Thorac. Surg.
,
66
(
6 Suppl 1
), pp.
S155
S161
.10.1016/S0003-4975(98)01100-X
125.
Prot
,
V.
,
Skallerud
,
B.
, and
Holzapfel
,
G. A.
,
2007
, “
Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics. Constitutive Modelling and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
71
(
8
), pp.
987
1008
.10.1002/nme.1983
126.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P.
,
Nicosia
,
M.
, and
Cochran
,
R. P.
,
2005
, “
Non-Linear Fluid-Coupled Model of the Mitral Valve
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
376
385
.
127.
Dal Pan
,
F.
,
Donzella
,
G.
,
Fucci
,
C.
, and
Schreiber
,
M.
,
2005
, “
Structural Effects of an Innovative Surgical Technique to Repair Heart Valve Defects
,”
J. Biomech.
,
38
(
12
), pp.
2460
2471
.10.1016/j.jbiomech.2004.10.005
128.
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Malhotra
,
D.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Suzuki
,
T.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
,
Guccione
,
J. M.
, and
Ratcliffe
,
M. B.
,
2010
, “
First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
89
(
5
), pp.
1546
1553
.10.1016/j.athoracsur.2010.02.036
129.
Lau
,
K. D.
,
Díaz-Zuccarini
,
V.
,
Scambler
,
P.
, and
Burriesci
,
G.
,
2011
, “
Fluid–Structure Interaction Study of the Edge-To-Edge Repair Technique on the Mitral Valve
,”
J. Biomech.
,
44
(
13
), pp.
2409
2417
.10.1016/j.jbiomech.2011.06.030
130.
Rabbah
,
J.-P.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A.
,
2012
, “
A Novel Left Heart Simulator for the Multi-Modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics
,”
Ann. Biomed. Eng.
(in press).
You do not currently have access to this content.