Muscle-driven simulations of human and animal motion are widely used to complement physical experiments for studying movement dynamics. Musculotendon models are an essential component of muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the simulated forces has been adequately evaluated. Here we compare the speed and accuracy of three musculotendon models: two with an elastic tendon (an equilibrium model and a damped equilibrium model) and one with a rigid tendon. Our simulation benchmarks demonstrate that the equilibrium and damped equilibrium models produce similar force profiles but have different computational speeds. At low activation, the damped equilibrium model is 29 times faster than the equilibrium model when using an explicit integrator and 3 times faster when using an implicit integrator; at high activation, the two models have similar simulation speeds. In the special case of simulating a muscle with a short tendon, the rigid-tendon model produces forces that match those generated by the elastic-tendon models, but simulates 2–54 times faster when an explicit integrator is used and 6–31 times faster when an implicit integrator is used. The equilibrium, damped equilibrium, and rigid-tendon models reproduce forces generated by maximally-activated biological muscle with mean absolute errors less than 8.9%, 8.9%, and 20.9% of the maximum isometric muscle force, respectively. When compared to forces generated by submaximally-activated biological muscle, the forces produced by the equilibrium, damped equilibrium, and rigid-tendon models have mean absolute errors less than 16.2%, 16.4%, and 18.5%, respectively. To encourage further development of musculotendon models, we provide implementations of each of these models in OpenSim version 3.1 and benchmark data online, enabling others to reproduce our results and test their models of musculotendon dynamics.

References

References
1.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking: Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.10.1016/S0966-6362(02)00068-1
2.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2003
, “
Biomechanics and Muscle Coordination of Human Walking: Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait Posture
,
17
(
1
), pp.
1
17
.10.1016/S0966-6362(02)00069-3
3.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
4.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
5.
Arnold
,
E. M.
, and
Delp
,
S. L.
,
2011
, “
Fibre Operating Lengths of Human Lower Limb Muscles During Walking
,”
Philos. T. R. Soc. B
,
366
(
1570
), pp.
1530
1539
.10.1098/rstb.2010.0345
6.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2006
, “
Muscles That Support the Body Also Modulate Forward Progression During Walking
,”
J. Biomech.
,
39
(
14
), pp.
2623
2630
.10.1016/j.jbiomech.2005.08.017
7.
Hamner
,
S. R.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2010
, “
Muscle Contributions to Propulsion and Support During Running
,”
J. Biomech.
,
43
(
14
), pp.
2709
2716
.10.1016/j.jbiomech.2010.06.025
8.
Neptune
,
R. R.
, and
Sasaki
,
K.
,
2005
, “
Ankle Plantar Flexor Force Production Is an Important Determinant of the Preferred Walk-to-Run Transition Speed
,”
J. Exp. Biol.
,
208
(
5
), pp.
799
808
.10.1242/jeb.01435
9.
Selbie
,
W. S.
, and
Caldwell
,
G. E.
,
1996
, “
A Simulation Study of Vertical Jumping From Different Starting Postures
,”
J. Biomech.
,
29
(
9
), pp.
1137
1146
.10.1016/0021-9290(96)00030-9
10.
Neptune
,
R. R.
, and
Hull
,
M. L.
,
1999
, “
A Theoretical Analysis of Preferred Pedaling Rate Selection in Endurance Cycling
,”
J. Biomech.
,
32
(
4
), pp.
409
415
.10.1016/S0021-9290(98)00182-1
11.
Neptune
,
R. R.
, and
van den Bogert
,
A. J.
,
1998
, “
Standard Mechanical Energy Analyses Do Not Correlate With Muscle Work in Cycling
,”
J. Biomech.
,
31
(
3
), pp.
239
245
.10.1016/S0021-9290(97)00129-2
12.
van der Krogt
,
M. M.
,
Delp
,
S. L.
, and
Schwartz
,
M. H.
,
2012
, “
How Robust Is Human Gait to Muscle Weakness?
,”
Gait Posture
,
36
(
1
), pp.
113
119
.10.1016/j.gaitpost.2012.01.017
13.
Steele
,
K. M.
,
Seth
,
A.
,
Hicks
,
J. L.
,
Schwartz
,
M. S.
, and
Delp
,
S. L.
,
2010
, “
Muscle Contributions to Support and Progression During Single-Limb Stance in Crouch Gait
,”
J. Biomech.
,
43
(
11
), pp.
2099
2105
.10.1016/j.jbiomech.2010.04.003
14.
Crabtree
,
C. A.
, and
Higginson
,
J. S.
,
2009
, “
Modeling Neuromuscular Effects of Ankle Foot Orthoses (AFOs) in Computer Simulations of Gait
,”
Gait Posture
,
29
(
1
), pp.
65
70
.10.1016/j.gaitpost.2008.06.004
15.
Hicks
,
J. L.
,
Schwartz
,
M. H.
,
Arnold
,
A. S.
, and
Delp
,
S. L.
,
2008
, “
Crouched Postures Reduce the Capacity of Muscles to Extend the Hip and Knee During the Single-Limb Stance Phase of Gait
,”
J. Biomech.
,
41
(
5
), pp.
960
967
.10.1016/j.jbiomech.2008.01.002
16.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.10.1109/TBME.2007.891934
17.
Riener
,
R.
, and
Fuhr
,
T.
,
1998
, “
Patient-Driven Control of FES-Supported Standing Up: A Simulation Study
,”
IEEE Trans. Rehab. Eng.
,
6
(
2
), pp.
113
124
.10.1109/86.681177
18.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
19.
Rasmussen
,
J.
,
Tørholm
,
S.
, and
de Zee
,
M.
,
2009
, “
Computational Analysis of the Influence of Seat Pan Inclination and Friction on Muscle Activity and Spinal Joint Forces
,”
Int. J. Ind. Ergonom.
,
39
(
1
), pp.
52
57
.10.1016/j.ergon.2008.07.008
20.
Eisenberg
,
E.
,
Hill
,
T. L.
, and
Chen
,
Y.
,
1980
, “
Cross-Bridge Model of Muscle Contraction. Quantitative Analysis
,”
Biophys. J.
,
29
(
2
), pp.
195
227
.10.1016/S0006-3495(80)85126-5
21.
Zahalak
,
G. I.
, and
Ma
,
S.-P.
,
1990
, “
Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
52
62
.10.1115/1.2891126
22.
Haselgrove
,
J. C.
, and
Huxley
,
H. E.
,
1973
, “
X-ray Evidence for Radial Cross-Bridge Movement and for the Sliding Filament Model in Actively Contracting Skeletal Muscle
,”
J. Mol. Biol.
,
77
(
4
), pp.
549
568
.10.1016/0022-2836(73)90222-2
23.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,” Crit. Rev. Biomed. Eng.,
17
(
4
), pp.
359
411
. Available at: http://europepmc.org/abstract/MED/2676342
24.
Epstein
,
M.
, and
Herzog
,
W.
,
1998
,
Theoretical Models of Skeletal Muscle: Biological and Mathematical Considerations,
Wiley
,
New York
.
25.
Winters
,
J. M.
, and
Stark
,
L.
,
1987
, “
Muscle Models: What Is Gained and What Is Lost by Varying Model Complexity
,”
Biol. Cybern.
,
55
(
6
), pp.
403
420
.10.1007/BF00318375
26.
Shi
,
P.
, and
McPhee
,
J.
,
2000
, “
Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory
,”
Multibody Syst. Dyn.
,
4
(
4
), pp.
355
381
.10.1023/A:1009841017268
27.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
.10.1115/1.2788865
28.
Bowden
,
F. P.
, and
Leben
,
L.
,
1939
, “
The Nature of Sliding and the Analysis of Friction
,”
Proc. R. Soc. Lon. Ser. A
,
169
(
938
), pp.
371
391
.10.1098/rspa.1939.0004
29.
Krylow
,
A. M.
, and
Sandercock
,
T. G.
,
1997
, “
Dynamic Force Responses of Muscle Involving Eccentric Contraction
,”
J. Biomech.
,
30
(
1
), pp.
27
33
.10.1016/S0021-9290(96)00097-8
30.
Perreault
,
E. J.
,
Heckman
,
C. J.
, and
Sandercock
,
T. G.
,
2003
, “
Hill Muscle Model Errors During Movement Are Greatest Within the Physiologically Relevant Range of Motor Unit Firing Rates
,”
J. Biomech.
,
36
(
2
), pp.
211
218
.10.1016/S0021-9290(02)00332-9
31.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
32.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
OpenSim: A Musculoskeletal Modeling and Simulation Framework for In Silico Investigations and Exchange
,”
Procedia IUTAM, Symposium on Human Body Dynamics
,
2
, pp.
212
232
.10.1016/j.piutam.2011.04.021
33.
Reinbolt
,
J. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
Simulation of Human Movement: Applications Using OpenSim
,”
Procedia IUTAM, Symposium on Human Body Dynamics
,
2
, pp.
186
198
.10.1016/j.piutam.2011.04.019
34.
Matsubara
,
I.
, and
Elliott
,
G. F.
,
1972
, “
X-ray Diffraction Studies on Skinned Single Fibres of Frog Skeletal Muscle
,”
J. Mol. Biol.
,
72
(
3
), pp.
657
669
.10.1016/0022-2836(72)90183-0
35.
Randhawa
,
A.
,
Jackman
,
M. E.
, and
Wakeling
,
J. M.
,
2012
, “
Muscle Gearing During Isotonic and Isokinetic Movements in the Ankle Plantarflexors
,”
Eur. J. Appl. Physiol.
,
113
(
2
), pp.
437
447
.10.1007/s00421-012-2448-z
36.
Brainerd
,
E. L.
, and
Azizi
,
E.
,
2005
, “
Muscle Fiber Angle, Segment Bulging and Architectural Gear Ratio in Segmented Musculature
,”
J. Exp. Biol.
,
208
(
17
), pp.
3249
3261
.10.1242/jeb.01770
37.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
38.
Winters
,
J. M.
,
1995
, “
An Improved Muscle-Reflex Actuator for Use in Large-Scale Neuromusculoskeletal Models
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
359
374
.10.1007/BF02584437
39.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.10.1115/1.1531112
40.
Cheng
,
E. J.
,
Brown
,
I. E.
, and
Loeb
,
G. E.
,
2000
, “
Virtual Muscle: A Computational Approach to Understanding the Effects of Muscle Properties on Motor Control
,”
J. Neurosci. Meth.
,
101
(
2
), pp.
117
130
.10.1016/S0165-0270(00)00258-2
41.
Magnusson
,
S. P.
,
Aagaard
,
P.
,
Rosager
,
S.
,
Dyhre-Poulsen
,
P.
, and
Kjaer
,
M.
,
2001
, “
Load–Displacement Properties of the Human Triceps Surae Aponeurosis In Vivo
,”
J. Physiol.
,
531
(
1
), pp.
277
288
.10.1111/j.1469-7793.2001.0277j.x
42.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
2002
, “
Tensile Properties of the In Vivo Human Gastrocnemius Tendon
,”
J. Biomech.
,
35
(
12
), pp.
1639
1646
.10.1016/S0021-9290(02)00240-3
43.
Winters
,
T. M.
,
Takahashi
,
M.
,
Lieber
,
R. L.
, and
Ward
,
S. R.
,
2011
, “
Whole Muscle Length-Tension Relationships Are Accurately Modeled as Scaled Sarcomeres in Rabbit Hindlimb Muscles
,”
J. Biomech.
,
44
(
1
), pp.
109
115
.10.1016/j.jbiomech.2010.08.033
44.
Gollapudi
,
S. K.
, and
Lin
,
D. C.
,
2009
, “
Experimental Determination of Sarcomere Force–Length Relationship in Type-I Human Skeletal Muscle Fibers
,”
J. Biomech.
,
42
(
13
), pp.
2011
2016
.10.1016/j.jbiomech.2009.06.013
45.
Mashima
,
H.
,
1984
, “
Force-Velocity Relation and Contractility in Striated Muscles
,”
Jap. J. Physiol.
,
34
(
1
), pp.
1
17
.10.2170/jjphysiol.34.1
46.
Joyce
,
G. C.
,
Rack
,
P. M. H.
, and
Westbury
,
D. R.
,
1969
, “
The Mechanical Properties of Cat Soleus Muscle During Controlled Lengthening and Shortening Movements
,” J. Physiol.,
204
(
2
), pp.
461
474
. Available at: http://jp.physoc.org/content/204/2/461.abstract
47.
Mortenson
,
M. E.
,
2006
,
Geometric Modeling
,
3rd ed.
Industrial Press
,
New York
.
48.
van den Bogert
,
A. J.
,
Blana
,
D.
, and
Heinrich
,
D.
,
2011
, “
Implicit Methods for Efficient Musculoskeletal Simulation and Optimal Control
,”
Procedia IUTAM, Symposium on Human Body Dynamics
,
2
, pp.
297
316
.10.1016/j.piutam.2011.04.027
49.
Hogan
,
N.
,
1985
, “
The Mechanics of Multi-Joint Posture and Movement Control
,”
Biol. Cybern.
,
52
(
5
), pp.
315
331
.10.1007/BF00355754
50.
Vinnars
,
E.
,
Bergstöm
,
J.
, and
Fürst
,
P.
,
1975
, “
Influence of the Postoperative State on the Intracellular Free Amino Acids in Human Muscle Tissue
,”
Ann. Surg.
,
182
(
6
), pp.
665
671
.10.1097/00000658-197512000-00001
51.
Hairer
,
E.
,
Nørsett
,
S. P.
, and
Wanner
,
G.
,
1987
,
Solving Ordinary Differential Equations I: Nonstiff Problems
,
2nd ed.
Springer-Verlag
,
Berlin
.
52.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
Simbody: Multibody Dynamics for Biomedical Research
,”
Procedia IUTAM, Symposium on Human Body Dynamics
,
2
, pp.
241
261
.10.1016/j.piutam.2011.04.023
53.
Talmadge
,
R. J.
,
Roy
,
R. R.
,
Caiozzo
,
V. J.
, and
Edgerton
,
V. R.
,
2002
, “
Mechanical Properties of Rat Soleus After Long-Term Spinal Cord Transection
,”
J. Appl. Physiol.
,
93
(
4
), pp.
1487
1497
.10.1152/japplphysiol.00053.2002
54.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
55.
Scott
,
S. H.
,
Brown
,
I. E.
, and
Loeb
,
G. E.
,
1996
, “
Mechanics of Feline Soleus: I. Effect of Fascicle Length and Velocity on Force Output
,”
J. Muscle Res. Cell. M.
,
17
(
2
), pp.
207
219
.10.1007/BF00124243
56.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Auto. Contr.
,
36
(
3
), pp.
322
332
.10.1109/9.73565
57.
Hairer
,
E.
, and
Wanner
,
G.
,
1991
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
2nd ed.
Springer-Verlag
,
Berlin
.
58.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.10.1016/0021-9290(89)90179-6
59.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comp. Meth. Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
60.
Herzog
,
W.
, and
Leonard
,
T. R.
,
2002
, “
Force Enhancement Following Stretching of Skeletal Muscle: A New Mechanism
,” J. Exp. Biol.,
205
(
9
), pp.
1275
1283
. Available at: http://jeb.biologists.org/content/205/9/1275.short
61.
Ranatunga
,
K. W.
,
1982
, “
Temperature-Dependence of Shortening Velocity and Rate of Isometric Tension Development in Rat Skeletal Muscle
,” J. Physiol.,
329
, pp.
465
483
. Available at: http://jp.physoc.org/content/329/1/465.short
62.
Westerblad
,
H.
,
Allen
,
D. G.
,
Bruton
,
J. D.
,
Andrade
,
F. H.
, and
Lännergren
,
J.
,
1998
, “
Mechanisms Underlying the Reduction of Isometric Force in Skeletal Muscle Fatigue
,”
Acta Physiol. Scand.
,
162
(
3
), pp.
253
260
.10.1046/j.1365-201X.1998.0301f.x
You do not currently have access to this content.