Planar biaxial tension remains a critical loading modality for fibrous soft tissue and is widely used to characterize tissue mechanical response, evaluate treatments, develop constitutive formulas, and obtain material properties for use in finite element studies. Although the application of tension on all edges of the test specimen represents the in situ environment, there remains a need to address the interpretation of experimental results. Unlike uniaxial tension, in biaxial tension the applied forces at the loading clamps do not transmit fully to the region of interest (ROI), which may lead to improper material characterization if not accounted for. In this study, we reviewed the tensile biaxial literature over the last ten years, noting experimental and analysis challenges. In response to these challenges, we used finite element simulations to quantify load transmission from the clamps to the ROI in biaxial tension and to formulate a correction factor that can be used to determine ROI stresses. Additionally, the impact of sample geometry, material anisotropy, and tissue orientation on the correction factor were determined. Large stress concentrations were evident in both square and cruciform geometries and for all levels of anisotropy. In general, stress concentrations were greater for the square geometry than the cruciform geometry. For both square and cruciform geometries, materials with fibers aligned parallel to the loading axes reduced stress concentrations compared to the isotropic tissue, resulting in more of the applied load being transferred to the ROI. In contrast, fiber-reinforced specimens oriented such that the fibers aligned at an angle to the loading axes produced very large stress concentrations across the clamps and shielding in the ROI. A correction factor technique was introduced that can be used to calculate the stresses in the ROI from the measured experimental loads at the clamps. Application of a correction factor to experimental biaxial results may lead to more accurate representation of the mechanical response of fibrous soft tissue.

References

References
1.
Sacks
,
M. S.
, and
Sun
,
W.
,
2003
, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
251
284
.10.1146/annurev.bioeng.5.011303.120714
2.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin. II. Experimental Results
,”
J. Biomech.
,
7
(
2
), pp.
171
182
.10.1016/0021-9290(74)90058-X
3.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin. I. Experimental System
,”
J. Biomech.
,
7
(
1
), pp.
29
34
.10.1016/0021-9290(74)90067-0
4.
Tong
,
P.
, and
Fung
,
Y. C.
,
1976
, “
The Stress-Strain Relationship for the Skin
,”
J. Biomech.
,
9
(
10
), pp.
649
657
.10.1016/0021-9290(76)90107-X
5.
Holmes
,
M. W.
,
Howarth
,
S. J.
,
Callaghan
,
J. P.
, and
Keir
,
P. J.
, “
Biomechanical Properties of the Transverse Carpal Ligament Under Biaxial Strain
,”
J. Orthop. Res.
,
30
(
5
), pp.
757
763
.10.1002/jor.21583
6.
Martin
,
C.
, and
Sun
,
W.
,
2012
, “
Biomechanical Characterization of Aortic Valve Tissue in Humans and Common Animal Models
,”
J. Biomed. Mater. Res. A
,
100
(
6
), pp.
1591
1599
.
7.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
, “
An Examination of the Influence of Strain Rate on Subfailure Mechanical Properties of the Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091010
.10.1115/1.4001945
8.
Eilaghi
,
A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
,
Simmons
,
C. A.
,
Wayne Brodland
,
G.
, and
Ross Ethier
,
C.
,
2010
, “
Biaxial Mechanical Testing of Human Sclera
,”
J. Biomech.
,
43
(
9
), pp.
1696
1701
.10.1016/j.jbiomech.2010.02.031
9.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
,
2004
, “
Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
,
32
(
9
), pp.
1231
1242
.10.1114/B:ABME.0000039357.70905.94
10.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
,
2012
, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,”
J. Biomech.
,
45
(
5
), pp.
790
798
.10.1016/j.jbiomech.2011.11.019
11.
Bellini
,
C.
,
Glass
,
P.
,
Sitti
,
M.
, and
Di Martino
,
E. S.
, “
Biaxial Mechanical Modeling of the Small Intestine
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1727
1740
.10.1016/j.jmbbm.2011.05.030
12.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
13.
Grashow
,
J. S.
,
Sacks
,
M. S.
,
Liao
,
J.
, and
Yoganathan
,
A. P.
,
2006
, “
Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1509
1518
.10.1007/s10439-006-9183-8
14.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
,
2006
, “
Biaixal Stress-Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
,
34
(
2
), pp.
315
325
.10.1007/s10439-005-9027-y
15.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
,
12
(
6
), pp.
423
436
.10.1016/0021-9290(79)90027-7
16.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for the Lung Tissue
,”
ASME J. Biomech. Eng.
,
105
(
4
), pp.
374
380
.10.1115/1.3138435
17.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
340
346
.10.1115/1.2891194
18.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
333
339
.10.1115/1.2891193
19.
Spencer
,
A.
,
1972
,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
London
.
20.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II–a Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.10.1115/1.1287158
21.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp–Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.10.1115/1.429624
22.
Szczesny
,
S. E.
,
Peloquin
,
J. M.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
, “
Biaxial Tensile Testing and Constitutive Modeling of Human Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021004
.10.1115/1.4005852
23.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.10.1007/s10237-011-0328-9
24.
Jhun
,
C. S.
,
Evans
,
M. C.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
2009
, “
Planar Biaxial Mechanical Behavior of Bioartificial Tissues Possessing Prescribed Fiber Alignment
,”
ASME J. Biomech. Eng.
,
131
(
8
), p.
081006
.10.1115/1.3148194
25.
Xu
,
B.
,
Chow
,
M. J.
, and
Zhang
,
Y.
,
2011
, “
Experimental and Modeling Study of Collagen Scaffolds With the Effects of Crosslinking and Fiber Alignment
,”
Int. J. Biomater.
, pp.
1
12
. 10.1155/2011/172389
26.
Bell
,
B. J.
,
Nauman
,
E.
, and
Voytik-Harbin
,
S. L.
, “
Multiscale Strain Analysis of Tissue Equivalents Using a Custom-Designed Biaxial Testing Device
,”
Biophys. J.
,
102
(
6
), pp.
1303
1312
.10.1016/j.bpj.2012.02.007
27.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
42
), pp.
17675
17680
.10.1073/pnas.0903716106
28.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.10.1109/MEMB.2009.932486
29.
Sander
,
E. A.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Structural Models of Fibrous Engineered Tissues
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
, pp.
4270
4272
.
30.
Holzapfel
,
G. A.
,
1996
, “
Large Strain Analysis of Soft Biological Membranes: Formulation and Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
132
(
1–2
), pp.
45
61
.10.1016/0045-7825(96)00999-1
31.
Lanir
,
Y.
,
1996
, “
Plausibility of Structural Constitutive Equations for Swelling Tissues–Implications of the C-N and S-E Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
10
16
.10.1115/1.2795935
32.
Sun
,
W.
, and
Sacks
,
M. S.
,
2005
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
190
199
.10.1007/s10237-005-0075-x
33.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2009
, “
A Closed-Form Structural Model of Planar Fibrous Tissue Mechanics
,”
J. Biomech.
,
42
(
10
), pp.
1424
1428
.10.1016/j.jbiomech.2009.04.005
34.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
35.
Smuts
,
A. N.
,
Blaine
,
D. C.
,
Scheffer
,
C.
,
Weich
,
H.
,
Doubell
,
A. F.
, and
Dellimore
,
K. H.
,
2011
, “
Application of Finite Element Analysis to the Design of Tissue Leaflets for a Percutaneous Aortic Valve
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
1
), pp.
85
98
.10.1016/j.jmbbm.2010.09.009
36.
Eilaghi
,
A.
,
Flanagan
,
J. G.
,
Brodland
,
G. W.
, and
Ethier
,
C. R.
,
2009
, “
Strain Uniformity in Biaxial Specimens Is Highly Sensitive to Attachment Details
,”
ASME J. Biomech. Eng.
,
131
(
9
), p.
091003
.10.1115/1.3148467
37.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.10.1115/1.1933931
38.
Waldman
,
S. D.
, and
Michael Lee
,
J.
,
2002
, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues. Part 1: Dynamic Behavior
,”
J. Mater. Sci.: Mater. Med.
,
13
(
10
), pp.
933
938
.10.1023/A:1019896210320
39.
Waldman
,
S. D.
, and
Lee
,
J. M.
,
2005
, “
Effect of Sample Geometry on the Apparent Biaxial Mechanical Behaviour of Planar Connective Tissues
,”
Biomaterials
,
26
(
35
), pp.
7504
7513
.10.1016/j.biomaterials.2005.05.056
40.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
41.
Cortes
,
D. H.
, and
Elliott
,
D. M.
,
2012
, “
Extra-Fibrillar Matrix Mechanics of Annulus Fibrosus in Tension and Compression
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
781
790
.10.1007/s10237-011-0351-x
42.
Garcia
,
J. J.
, and
Cortes
,
D. H.
,
2006
, “
A Nonlinear Biphasic Viscohyperelastic Model for Articular Cartilage
,”
J. Biomech.
,
39
(
16
), pp.
2991
2998
.10.1016/j.jbiomech.2005.10.017
43.
Cortes
,
D. H.
, and
Elliott
,
D. M.
, “
Extra-Fibrillar Matrix Mechanics of Annulus Fibrosus in Tension and Compression
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
781
790
.10.1007/s10237-011-0351-x
44.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.10.1115/1.3212104
45.
Mayne
,
A. S.
,
Christie
,
G. W.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
,
1989
, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprostheses With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
,
98
(
2
), pp.
170
180
.
46.
Guerin
,
H. A.
, and
Elliott
,
D. M.
,
2005
, “
The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon
,”
ASME J. Biomech. Eng.
,
127
(
2
), pp.
345
350
.10.1115/1.1865212
47.
Guerin
,
H. A.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.10.1016/j.jbiomech.2005.04.007
48.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.10.1115/1.1614819
You do not currently have access to this content.