While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to −150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the “iceball” with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated, multiprobe freezing geometries. Accurately characterizing cryoprobe behavior in phantoms requires detailed knowledge of the freezing medium's properties throughout the range of expected temperatures and an appropriate description of the heat transfer across the probe's exchange surfaces. Here we demonstrate that convective exchange boundary conditions provide an accurate and versatile description of heat transfer from cryoprobes, offering potential advantages over the traditional constant surface heat flux and constant surface temperature descriptions. In addition, although this study was conducted on Joule–Thomson type cryoprobes, the general methodologies should extend to any probe that is based on convective exchange with a cryogenic fluid.

References

References
1.
Onik
,
G. M.
,
Cohen
,
J. K.
,
Reyes
,
G. D.
,
Rubinsky
,
B.
,
Chang
,
Z.
, and
Baust
J.
,
1993
, “
Transrectal Ultrasound-Guided Percutaneous Radical Cryosurgical Ablation of the Prostate
,”
Cancer
,
72
(
4
), pp.
1291
1299
.10.1002/1097-0142(19930815)72:4<1291::AID-CNCR2820720423>3.0.CO;2-I
2.
Uchida
,
M.
,
Imaide
,
Y.
,
Sugimoto
,
K.
,
Uehara
,
H.
, and
Watanabe
H.
,
1995
, “
Percutaneous Cryosurgery for Renal Tumours
,”
Brit. J. Urology
,
75
(
2
), pp.
132
137
.10.1111/j.1464-410X.1995.tb07297.x
3.
Ravikumar
,
T. S.
,
Kane
,
R.
,
Cady
,
B.
,
Jenkins
,
R.
,
Clouse
,
M.
, and
Steele
,
G.
Jr.
,
1991
, “
A 5-Year Study of Cryosurgery in the Treatment of Liver Tumors
,”
Arch. Surgery
126
(
12
), pp.
1520
1524
.10.1001/archsurg.1991.01410360094015
4.
Maiwand
,
M. O.
, and
Asimakopoulos
G.
,
2004
, “
Cryosurgery for Lung Cancer: Clinical Results and Technical Aspects
,”
Tech. Cancer Res. Treat.
,
3
(
2
), pp.
143
150
.
5.
Cox
,
J. L.
,
Ferguson
,
T. B.
Jr.
,
Lindsay
,
B. D.
, and
Cain
M. E.
,
1990
, “
Perinodal Cryosurgery for Atrioventricular Node Reentry Tachycardia in 23 Patients
,”
J. Thorac. Cardiov. Sur.
,
99
(
3
), pp.
440
449
.
6.
Avitall
,
B.
,
Urboniene
,
D.
,
Rozmus
,
G.
,
Lafontaine
,
D.
,
Helms
,
R.
, and
Urbonas
A.
,
2003
, “
New Cryotechnology for Electrical Isolation of the Oulmonary Veins
,”
J. Cardiovac. Electr.
,
14
(
3
), pp.
281
286
.10.1046/j.1540-8167.2003.02357.x
7.
Barnard
,
D.
,
Lloyd
,
J.
, and
Evans
J.
,
1981
, “
Cryoanalgesia in the Management of Chronic Facial Pain
,”
J. Maxillofac. Surg.
,
9
, pp.
101
102
.10.1016/S0301-0503(81)80024-0
8.
Allen
,
B. H.
,
Fallat
,
L. M.
, and
Schwartz
S. M.
,
2007
, “
Cryosurgery: An Innovative Technique for the Treatment of Plantar Fasciitis
,”
J. Foot Ankle Surg.
,
46
(
2
), pp.
75
79
.10.1053/j.jfas.2007.01.006
9.
Rubinsky
B.
,
2000
, “
Cryosurgery
,”
Ann. Rev. Biomed. Eng.
,
2
(
1
), pp.
157
187
.10.1146/annurev.bioeng.2.1.157
10.
Gage
,
A. A.
, and
Baust
J.
,
1998
, “
Mechanisms of Tissue Injury in Cryosurgery
,”
Cryobiology
,
37
(
3
), pp.
171
186
.10.1006/cryo.1998.2115
11.
Hoffmann
,
N. E.
, and
Bischof
J. C.
,
2002
, “
The Cryobiology of Cryosurgical Injury
,”
Urology
,
60
(
2
), pp.
40
49
.10.1016/S0090-4295(02)01683-7
12.
Baust
,
J. G.
,
Gage
,
A. A.
,
Klossner
,
D.
,
Clarke
,
D.
,
Miller
,
R.
,
Cohen
,
J.
,
Katz
,
A.
,
Polascik
,
T.
,
Clarke
,
H.
, and
Baust
J. M.
,
2007
, “
Issues Critical to the Successful Application of Cryosurgical Ablation of the Prostate.
,”
Tech. Cancer Res. Treat.
,
6
(
2
), pp.
97
109
.
13.
Jiang
,
J.
,
Goel
,
R.
,
Schmechel
,
S.
,
Vercellotti
,
G.
,
Forster
,
C.
, and
Bischof
J.
,
2010
, “
Pre-Conditioning Cryosurgery: Cellular and Molecular Mechanisms and Dynamics of TNF-Alpha Enhanced Cryotherapy in an In Vivo Prostate Cancer Model System
,”
Cryobiology
,
61
(
3
), pp.
280
288
.10.1016/j.cryobiol.2010.09.006
14.
Cooper
,
T. E.
, and
Trezek
G. J.
,
1970
, “
Analytical Prediction of the Temperature Field Emanating From a Cryogenic Surgical Cannula
,”
Cryobiology
,
7
(
2
), pp.
79
83
.10.1016/0011-2240(70)90002-7
15.
Cooper
,
T. E.
, and
Trezek
G. J.
,
1971
, “
Rate of Lesion Growth Around Spherical and Cylindrical Cryoprobes
,”
Cryobiology
,
7
(
4
), pp.
183
190
.10.1016/0011-2240(70)90020-9
16.
Bischof
,
J. C.
,
Bastacky
,
J.
, and
Rubinsky
B.
,
1992
, “
An Analytical Study of Cryosurgery in the Lung
,”
J. Biomech. Eng.
,
114
, pp.
467
472
.10.1115/1.2894096
17.
Schweikert
,
R. J.
, and
Keanini
R. G.
,
1999
, “
A Finite Element and Order of Magnitude Analysis of Cryosurgery in the Lung
,”
Int. Commun. Heat Mass Transf.
,
26
(
1
), pp.
1
12
.10.1016/S0735-1933(98)00116-X
18.
Wan
,
R.
,
Liu
,
Z.
,
Muldrew
,
K.
, and
Rewcastle
J.
,
2003
, “
A Finite Element Model for Ice Ball Evolution in a Multi-probe Cryosurgery
,”
Comp. Meth. Biomech. Biomed. Eng.
,
6
(
3
), pp.
197
208
.10.1080/1025584031000151185
19.
Rabin
Y.
,
2000
, “
The Effect of Temperature-Dependent Thermal Conductivity in Heat Transfer Simulations of Frozen Biomaterials
,”
Cryo Lett.
,
21
(
3
), pp.
163
170
.
20.
Aus
G.
,
2006
, “
Current Status of HIFU and Cryotherapy in Prostate Cancer—A Review
,”
Eur. Urology
,
50
(
5
), pp.
927
934
.10.1016/j.eururo.2006.07.011
21.
Baissalov
,
R.
,
Sandison
,
G.
,
Donnelly
,
B.
,
Saliken
,
J.
,
McKinnon
,
J.
,
Muldrew
,
K.
, and
Rewcastle
J.
,
2000
, “
A Semi-Empirical Treatment Planning Model for Optimization of Multiprobe Cryosurgery
,”
Phys. Med. Biol.
,
45
, pp.
1085
1098
.10.1088/0031-9155/45/5/301
22.
Rewcastle
,
J. C.
,
Sandison
,
G. A.
,
Hahn
,
L. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
, and
Donnelly
B. J.
,
1998
, “
A Model for the Time-Dependent Thermal Distribution Within an Iceball Surrounding a Cryoprobe
,”
Phys. Med. Biol.
,
43
, pp.
3519
3534
.10.1088/0031-9155/43/12/010
23.
Rewcastle
,
J. C.
,
Sandison
,
G. A.
,
Muldrew
,
K.
,
Saliken
,
J. C.
, and
Donnelly
B. J.
,
2001
, “
A Model for the Time Dependent Three-Dimensional Thermal Distribution Within Iceballs Surrounding Multiple Cryoprobes
,”
Med. Phys.
,
28
, pp.
1125
1137
.10.1118/1.1374246
24.
Rossi
,
M. R.
, and
Rabin
Y.
,
2007
, “
Experimental Verification of Numerical Simulations of Cryosurgery With Application to Computerized Planning
,”
Phys. Med. Biol.
,
52
, pp.
4553
4567
.10.1088/0031-9155/52/15/013
25.
Rossi
,
M. R.
,
Tanaka
,
D.
,
Shimada
,
K.
, and
Rabin
Y.
,
2007
, “
An Efficient Numerical Technique for Bioheat Simulations and Its Application to Computerized Cryosurgery Planning
,”
Comp. Meth. Prog. Biomed.
,
85
(
1
), pp.
41
50
.10.1016/j.cmpb.2006.09.014
26.
Magalov
,
Z.
,
Shitzer
,
A.
, and
Degani
D.
,
2007
, “
Isothermal Volume Contours Generated in a Freezing Gel by Embedded Cryo-Needles With Applications to Cryo-Surgery
,”
Cryobiology
,
55
(
2
), pp.
127
137
.10.1016/j.cryobiol.2007.06.009
27.
Kim
,
C.
,
O'Rourke
,
A. P.
,
Mahvi
,
D. M.
, and
Webster
J. G.
,
2007
, “
Finite-Element Analysis of Ex Vivo and In Vivo Hepatic Cryoablation
,”
Biomed. Eng. IEEE Trans.
,
54
(
7
), pp.
1177
1185
.10.1109/TBME.2007.900818
28.
Blezek
,
D. J.
,
Carlson
,
D. G.
,
Cheng
,
L. T.
,
Christensen
,
J. A.
,
Callstrom
,
M. R.
, and
Erickson
B. J.
,
2010
, “
Cell Accelerated Cryoablation Simulation
,”
Comp. Meth. Prog. Biodmed.
,
98
(
3
), pp.
241
252
.10.1016/j.cmpb.2009.09.004
29.
Keanini
,
R. G.
, and
Rubinsky
B.
,
1992
, “
Optimization of Multiprobe Cryosurgery
,”
ASME J. Heat Trans.
,
114
(
4
), pp.
796
801
.10.1115/1.2911885
30.
He
,
X.
, and
Bischof
,
J. C.
,
2005
, “
Analysis of Thermal Stress in Cryosurgery of Kidneys
,”
J. Biomech. Eng.
,
127
, pp.
656
661
.10.1115/1.1934021
31.
Zhang
,
J.
,
Sandison
,
G. A.
,
Murthy
,
J. Y.
, and
Xu
L. X.
,
2005
, “
Numerical Simulation for Heat Transfer in Prostate Cancer Cryosurgery
,”
J. Biomech. Eng.
,
127
, pp.
279
294
.10.1115/1.1865193
32.
Zhang
X.
,
2008
, “
Multi-Probe Cryosurgical Treatments: An Experimental and Computational Study Confirms Probe Cooling Power is Probe Number and Placement Dependent
,”
M.S.
,
University of Minnesota
, Minneapolis, MN.
33.
Young
,
J. L.
,
Kolla
,
S. B.
,
Pick
,
D. L.
,
Sountoulides
,
P.
,
Kaufmann
,
O. G.
,
Ortiz-Vanderdys
,
C. G.
,
Huynh
,
V. B.
,
Kaplan
,
A. G.
,
Andrade
,
L. A.
,
Osann
,
K. E.
,
Louie
,
M. K.
,
McDougall
,
E. M.
, and
Clayman
,
R. V.
,
2010
, “
In Vitro, Ex Vivo and In Vivo Isotherms for Renal Cryotherapy
,”
J. Urology
,
183
(
2
), pp.
752
758
.10.1016/j.juro.2009.09.072
34.
Choi
,
J.
, and
Bischof
J. C.
,
2010
, “
Review of Biomaterial Thermal Property Measurements in the Cryogenic Regime and Their Use for Prediction of Equilibrium and Non-Equilibrium Freezing Applications in Cryobiology
,”
Cryobiology
,
60
(
1
), pp.
52
70
.10.1016/j.cryobiol.2009.11.004
35.
Choi
,
J. H.
, and
Bischof
J. C.
,
2008
, “
A Quantitative Analysis of the Thermal Properties of Porcine Liver With Glycerol at Subzero and Cryogenic Temperatures
,”
Cryobiology
,
57
(
2
), pp.
79
83
.10.1016/j.cryobiol.2008.05.004
36.
Patel
,
P. A.
,
Valvano
,
J. W.
,
Pearce
,
J. A.
,
Prahl
,
S. A.
, and
Denham
C. R.
,
1987
, “
A Self-Heated Thermistor Technique to Measure Effective Thermal Properties From the Tissue Surface
,”
J. Biomech. Eng.
,
109
, pp.
330
335
.10.1115/1.3138689
37.
Zhang
,
M.
,
Che
,
Z.
,
Chen
,
J.
,
Zhao
,
H.
,
Yang
,
L.
,
Zhong
,
Z.
, and
Lu
J.
,
2011
, “
Experimental Determination of Thermal Conductivity of Water- Agar Gel at Different Concentrations and Temperatures
,”
J. Chem. Eng. Data
,
56
(
4
), pp.
859
864
.10.1021/je100570h
38.
Bergman
T. L.
,
Lavine
A. S.
,
Incropera
F. P.
, and
DeWitt
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Reed
R. P.
, and
Horiuchi
T.
,
1983
,
Austenitic Steels at Low Temperatures
,
Plenum Publishing Corp.
,
New York
.
40.
Jensen
,
J. E.
,
Tuttle
,
W. A.
,
Stewart
,
R. B.
,
Brechna
,
H.
, and
Prodell
A. G.
,
1980
,
Brookhaven National Laboratory Selected Cryogenic Data Notebook: Volume 1, Sections 1–9
,
Brookhaven National Lab.
,
Upton, NY
.
41.
Rabinovich
V. A.
, and
Selover
T. B.
,
1988
,
Thermophysical Properties of Neon, Argon, Krypton, and Xenon
,
Hemisphere PubCorp
,
Berlin, New York, Washington, DC
.
42.
Harvey
A. H.
,
2012
, “
Properties of Ice and Supercooled Water
,”
CRC Handbook of Chemistry and Physics 2012–2013
,
CRC Press
,
Boca Raton, FL
, pp.
6
12
.
43.
Li
C.
,
1976
, “
Thermal Conductivity of Liquid Mixtures
,”
AIChE J.
,
22
(
5
), pp.
927
930
.10.1002/aic.690220520
44.
Angell
,
C. A.
, and
Smith
D. L.
,
1982
, “
Test of the Entropy Basis of the Vogel-Tammann-Fulcher Equation. Dielectric Relaxation of Polyalcohols Near Tg
,”
J. Phys. Chem.
,
86
(
19
), pp.
3845
3852
.10.1021/j100216a028
45.
Sun
,
T.
, and
Teja
A. S.
,
2003
, “
Density, Viscosity, and Thermal Conductivity of Aqueous Ethylene, Diethylene, and Triethylene Glycol Mixtures Between 290 K and 450 K
,”
J. Chem. Eng. Data
,
48
(
1
), pp.
198
202
.10.1021/je025610o
46.
Silverman
,
S. G.
,
Tuncali
,
K.
,
Adams
,
D. F.
,
vanSonnenberg
,
E.
,
Zou
,
K. H.
,
Kacher
,
D. F.
,
Morrison
,
P. R.
, and
Jolesz
F. A.
,
2000
, “
MR Imaging-Guided Percutaneous Cryotherapy of Liver Tumors: Initial Experience
,”
Radiology
,
217
(
3
), pp.
657
664
.
47.
Wansapura
,
J. P.
,
Daniel
,
B. L.
,
Vigen
,
K. K.
, and
Butts
K.
,
2005
, “
In Vivo MR Thermometry of Frozen Tissue Using R2* and Signal Intensity
,”
Acad. Radiol.
,
12
(
9
), pp.
1080
1084
.10.1016/j.acra.2005.06.006
48.
Rossi
,
M. R.
,
Tanaka
,
D.
,
Shimada
,
K.
, and
Rabin
Y.
,
2008
, “
Computerized Planning of Cryosurgery Using Bubble Packing: An Experimental Validation on a Phantom Material
,”
Int. J. Heat Mass Transf.
,
51
(
23
), pp.
5671
5678
.10.1016/j.ijheatmasstransfer.2008.04.045
49.
Martin
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transf.
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
You do not currently have access to this content.