Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice.

References

References
1.
Scales
,
J. T.
, and
Perry
,
R.
,
1974
, “
Screw and Plate Devices in the Fixation of Fractures
,”
Acta Orthopaedica Belgica
,
40
, pp.
836
845
.
2.
Wu
,
M. H.
,
Lee
,
P. C.
,
Peng
,
K. T.
,
Wu
,
C. C.
,
Huang
,
T. J.
, and
Hsu
,
R. W.
,
2012
, “
Complications of Cement-Augmented Dynamic Hip Screws in Unstable Type Intertrochanteric Fractures—A Case Series Study
,”
Chang Gung Med. J.
,
35
(
4
), pp.
345
352
.
3.
Nelissen
,
E. M.
,
van Langelann
,
E. J.
, and
Nelissen
,
R. G. H. H.
,
2009
, “
Stability of Medial Opening Wedge High Tibial Osteotomy: A Failure Analysis
,”
Int. Orthop.
,
34
(
2
), pp.
217
223
.10.1007/s00264-009-0723-3
4.
Spahn
,
G.
,
2004
, “
Complications in High Tibial (Medial Open Wedge) Osteotomy
,”
Arch. Orthop. Trauma Surg.
,
124
, pp.
649
653
.10.1007/s00402-003-0588-7
5.
DeCoster
,
T. A.
,
Heetderks
,
D. B.
,
Downey
,
D. J.
,
Ferries
,
J. S.
, and
Jones
,
W.
,
1990
, “
Optimizing Bone Screw Pullout Force
,”
J. Orthop. Trauma
,
4
(
2
), pp.
169
174
.10.1097/00005131-199004020-00012
6.
Zdero
,
R.
,
Rose
,
S.
,
Schemitsch
,
E. H.
, and
Papini
,
M.
,
2007
, “
Cortical Screw Pullout Strength and Effective Shear Stress in Synthetic Third Generation Composite Femurs
,”
ASME J. Biomech. Eng.
,
129
(2), pp.
289
293
.10.1115/1.2540926
7.
Zdero
,
R.
,
Elfallah
,
K.
,
Olsen
,
M.
, and
Schemitsch
,
E. H.
,
2009
, “
Cortical Screw Purchase in Synthetic and Human Femurs
,”
ASME J. Biomech. Eng.
,
131
(9), p.
094503
.10.1115/1.3194755
8.
Hutson
,
J. J.
,
Zych
,
G. A.
,
Cole
,
J. D.
,
Johnson
,
K. D.
,
Ostermann
,
P.
,
Milne
,
E. L.
, and
Latta
,
L.
,
1995
, “
Mechanical Failures of Intramedullary Tibial Nails Applied Without Reaming
,”
Clin. Orthop.
,
315
, pp.
129
137
.
9.
Collinge
,
C. A.
,
Stern
,
S.
,
Cordes
,
S.
, and
Lautenschlager
,
E. P.
,
1999
, “
Mechanical Properties of Small Fragment Screws
,”
Clin. Orthop.
,
373
, pp.
277
284
.
10.
Chao
,
C. K.
,
Hsu
,
C. C.
,
Wang
,
J. L.
, and
Lin
,
J.
,
2007
, “
Increasing Bending Strength of Tibial Locking Screws: Mechanical Tests and Finite Element Analyses
,”
Clin. Biomech.
,
22
, pp.
59
66
.10.1016/j.clinbiomech.2006.07.007
11.
Perren
,
S. M.
,
2002
, “
Review Article: Evolution of the Internal Fixation of Long Bone Fractures
,”
J. Bone Joint Surg.
,
84-B
, pp.
1093
1110
.10.1302/0301-620X.84B8.13752
12.
Schatzker
,
J.
,
Horne
,
J. G.
, and
Sumner-Smith
,
G.
,
1975
, “
The Reaction of Cortical Bone to Compression of Screw Threads
,”
Clin. Orthop. Related Res.
,
108
, pp.
263
265
.10.1097/00003086-197509000-00033
13.
Schatzker
,
J.
,
Horne
,
J. G.
, and
Sumner-Smith
,
G.
,
1975
, “
The Effect of Movement on the Holding Power of Screws in Bone
,”
Clin. Orthop. Related Res.
,
108
, pp.
257
262
.10.1097/00003086-197509000-00032
14.
Cordey
,
J.
,
Borgeaud
,
M.
, and
Perren
,
S. M.
,
2000
, “
Force Transfer Between the Plate and the Bone: Relative Importance of the Bending Stiffness of the Screws and the Friction Between Plate and Bone
,”
Injury
,
31
, pp.
21
28
.10.1016/S0020-1383(00)80028-5
15.
Seebeck
,
J.
,
Goldhahn
,
J.
,
Stadele
,
H.
,
Messmer
,
P.
,
Morlock
,
M. M.
, and
Schneider
,
E.
,
2004
, “
Effect of Cortical Thickness and Cancellous Bone Density on the Holding Strength of Internal Fixator Screws
,”
J. Orthop. Res.
,
22
, pp.
1237
1242
.10.1016/j.orthres.2004.04.001
16.
Brown
,
G. A.
,
McCarthy
,
T.
,
Bourgeault
,
C. A.
, and
Callahan
,
D. J.
,
2000
, “
Mechanical Performance of Standard and Cannulated 4.0 mm Cancellous Bone Screws
,”
J. Orthop. Res.
,
18
, pp.
307
312
.10.1002/jor.1100180220
17.
Zand
,
M. S.
,
Goldstein
,
S. A.
, and
Matthews
,
L. S.
,
1983
, “
Fatigue Failure of Cortical Bone Screws
,”
J. Biomech.
,
16
(
5
), pp.
305
311
.10.1016/0021-9290(83)90014-3
18.
Merk
,
B. R.
,
Stern
,
S. H.
,
Cordes
,
S.
, and
Lautenschlager
,
E. P.
,
2001
, “
A Fatigue Life Analysis of Small Fragment Screws
,”
J. Orthop. Trauma
,
15
(
7
), pp.
494
499
.10.1097/00005131-200109000-00006
19.
Budynas
,
R. G.
,
1977
,
Advanced Strength and Applied Stress Analysis
,
McGraw-Hill Inc.
,
New York, NY
.
20.
Hetenyi
,
M.
,
1946
,
Beams on Elastic Foundation: Theory With Applications in the Fields of Civil and Mechanical Engineering
,
University of Michigan Press
,
Ann Arbor, MI
.
21.
Heiner
,
A. D.
,
2008
, “
Structural Properties of Fourth-Generation Composite Femurs and Tibias
,”
J. Biomech.
,
41
, pp.
3282
3284
.10.1016/j.jbiomech.2008.08.013
22.
Zdero
,
R.
,
Shah
,
S.
,
Mosli
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
,
2010
, “
The Effect of the Screw Pull-Out Rate on Cortical Screw Purchase in Unreamed and Reamed Synthetic Long Bones
,”
Proc. IMechE Part H: J. Eng. Med.
,
224
, pp.
503
513
.10.1243/09544119JEIM675
23.
James
,
T. P.
, and
Andrade
,
B. A.
,
2012
, “
Surgical Screws Under a Bending Load: A Comparison of Synthetic Composite Bone to Natural Bone
,”
J. Mech. Eng. Automation
,
2
(
6
), pp.
389
394
.
24.
Adult Human Tibia
,
High Tibial Osteotomy Revision Surgery
,
Tufts Medical Center
,
Boston, MA
,
2009
.
You do not currently have access to this content.