The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.

References

References
1.
van Rietbergen
,
B.
,
Huiskes
,
R.
,
Eckstein
,
F.
, and
Rüegsegger
,
P.
,
2003
, “
Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur
,”
J. Bone Miner. Res.
,
18
(
10
), pp.
1781
1788
.10.1359/jbmr.2003.18.10.1781
2.
Verhulp
,
E.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2008
, “
Load Distribution in the Healthy and Osteoporotic Human Proximal Femur During a Fall to the Side
,”
Bone
,
42
(
1
), pp.
30
35
.10.1016/j.bone.2007.08.039
3.
Homminga
,
J.
,
van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
,
2004
, “
The Osteoporotic Vertebral Structure is Well Adapted to the Loads of Daily Life, but not to Infrequent ‘Error’ Loads
,”
Bone
,
34
(
3
), pp.
510
516
.10.1016/j.bone.2003.12.001
4.
Newitt
,
D. C.
,
Majumdar
,
S.
,
van Rietbergen
,
B.
,
von Ingersleben
,
G.
,
Harris
,
S. T.
,
Genant
,
H. K.
,
Chesnut
,
C.
,
Garnero
,
P.
, and
MacDonald
,
B.
,
2002
, “
In Vivo Assessment of Architecture and Micro-Finite Element Analysis Derived Indices of Mechanical Properties of Trabecular Bone in the Radius
,”
Osteoporosis Int.
,
13
(
1
), pp.
6
17
.10.1007/s001980200027
5.
Ciarelli
,
T. E.
,
Fyhrie
,
D. P.
,
Schaffler
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Variations in Three-Dimensional Cancellous Bone Architecture of the Proximal Femur in Female Hip Fractures and in Controls
,”
J. Bone Miner. Res.
,
15
(
1
), pp.
32
40
.10.1359/jbmr.2000.15.1.32
6.
Tanck
,
E.
,
Bakker
,
A. D.
,
Kregting
,
S.
,
Cornelissen
,
B.
,
Klein-Nulend
,
J.
, and
van Rietbergen
,
B.
,
2009
, “
Predictive Value of Femoral Head Heterogeneity for Fracture Risk
,”
Bone
,
44
(
4
), pp.
590
595
.10.1016/j.bone.2008.12.022
7.
Homminga
,
J.
,
McCreadie
,
B. R.
,
Ciarelli
,
T. E.
,
Weinans
,
H.
,
Goldstein
,
S. A.
, and
Huiskes
,
R.
,
2002
, “
Cancellous Bone Mechanical Properties From Normals and Patients With Hip Fractures Differ on the Structure Level, Not on the Bone Hard Tissue Level
,”
Bone
,
30
(
5
), pp.
759
764
.10.1016/S8756-3282(02)00693-2
8.
Cowin
,
S. C.
,
1986
, “
Fabric Dependence of an Anisotropic Strength Criterion
,”
Mech. Mater.
,
5
, pp.
251
260
.10.1016/0167-6636(86)90022-0
9.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai-Wu Quadratic Multiaxial Failure Criterion to Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
(1), pp.
99
107
.10.1115/1.2798051
10.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
,
1999
, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Trabecular Bone.
,”
ASME J. Biomech. Eng.
,
121
(4), pp.
414
422
.10.1115/1.2798339
11.
Niebur
,
G. L.
,
Feldstein
,
M. J.
, and
Keaveny
,
T. M.
,
2002
, “
Biaxial Failure Behavior of Bovine Tibial Trabecular Bone
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
699
705
.10.1115/1.1517566
12.
Bayraktar
,
H. H.
,
Gupta
,
A.
,
Kwon
,
R. Y.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
,
2004
, “
The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
677
684
.10.1115/1.1763177
13.
Rincon-Kohli
,
L.
, and
Zysset
,
P. K.
,
2009
, “
Multi-Axial Mechanical Properties of Human Trabecular Bone
,”
Biomech. Model. Mechanobiol.
,
8
(
3
), pp.
195
208
.10.1007/s10237-008-0128-z
14.
Wolfram
,
U.
,
Gross
,
T.
,
Pahr
,
D. H.
,
Schwiedrzik
,
J.
,
Wilke
,
H. J.
, and
Zysset
,
P. K.
,
2012
, “
Fabric-Based Tsai-Wu Yield Criteria for Vertebral Trabecular Bone in Stress and Strain Space
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
218
228
.10.1016/j.jmbbm.2012.07.005
15.
Bevill
,
G.
,
Farhamand
,
F.
, and
Keaveny
,
T. M.
,
2009
, “
Heterogeneity of Yield Strain in Low-Density Versus High-Density Human Trabecular Bone
,”
J. Biomech.
,
42
(
13
), pp.
2165
2170
.10.1016/j.jbiomech.2009.05.023
16.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.10.1016/S0021-9290(01)00011-2
17.
Rüegsegger
,
P.
,
Koller
,
B.
, and
Müller
,
R.
,
1996
, “
A Microtomographic System for the Nondestructive Evaluation of Bone Architecture
,”
Calcif. Tissue Int.
,
58
(
1
), pp.
24
29
.10.1007/BF02509542
18.
Beck
,
J. D.
,
Canfield
,
B. L.
,
Haddock
,
S. M.
,
Chen
,
T. J.
,
Kothari
,
M.
, and
Keaveny
,
T. M.
,
1997
, “
Three-Dimensional Imaging of Trabecular Bone Using the Computer Numerically Controlled Milling Technique
,”
Bone
,
21
(
3
), pp.
281
287
.10.1016/S8756-3282(97)00122-1
19.
Hildebrand
,
T.
,
Laib
,
A.
,
Müller
,
R.
,
Dequeker
,
J.
, and
Rüegsegger
,
P.
,
1999
, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data From Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
,
14
(
7
), pp.
1167
1174
.10.1359/jbmr.1999.14.7.1167
20.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
(
12
), pp.
1653
1657
.
21.
Papadopoulos
,
P.
, and
Lu
,
J.
,
2001
, “
On the Formulation and Numerical Solution of Problems in Anisotropic Finite Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
37–38
), pp.
4889
4910
.10.1016/S0045-7825(00)00355-8
22.
Bevill
,
G.
,
Eswaran
,
S. K.
,
Gupta
,
A.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
,
2006
, “
Influence of Bone Volume Fraction and Architecture on Computed Large-Deformation Failure Mechanisms in Human Trabecular Bone.
,”
Bone
,
39
(
6
), pp.
1218
1225
.10.1016/j.bone.2006.06.016
23.
Sanyal
,
A.
,
Gupta
,
A.
,
Bayraktar
,
H. H.
,
Kwon
,
R. Y.
, and
Keaveny
,
T. M.
,
2012
, “
Shear Strength Behavior of Human Trabecular Bone
,”
J. Biomech.
,
45
(
15
), pp.
2513
2519
.10.1016/j.jbiomech.2012.07.023
24.
Adams
,
M. F.
,
Bayraktar
,
H. H.
,
Keaveny
,
T. M.
, and
Papadopoulos
,
P.
,
2004
, “
Ultrascalable Implicit Finite Element Analyses in Solid Mechanics With Over a Half a Billion Degrees of Freedom
,”
Proceedings of the ACM/IEEE SC2004: High Performance Networking and Computing
.
25.
Fitzgibbon
,
A. M. P.
, and
Fisher
,
B.
,
1999
, “
Direct Least-Squares Fitting of Ellipses
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
21
(
5
), pp.
476
480
.10.1109/34.765658
26.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.10.1016/S0021-9290(98)00057-8
27.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
,
1999
, “
Isotropy of Uniaxial Yield Strains for Bovine Trabecular Bone
,”
J. Orthop. Res.
,
17
, pp.
582
585
.10.1002/jor.1100170418
28.
Mosekilde
,
L.
,
1988
, “
Age-Related Changes in Vertebral Trabecular Bone Architecture—Assessed by a New Method
,”
Bone
,
9
(
4
), pp.
247
250
.10.1016/8756-3282(88)90038-5
29.
Thomsen
,
J. S.
,
Ebbesen
,
E. N.
, and
Mosekilde
,
L.
,
2002
, “
Age-Related Differences Between Thinning of Horizontal and Vertical Trabeculae in Human Lumbar Bone as Assessed by a New Computerized Method
,”
Bone
,
31
(
1
), pp.
136
142
.10.1016/S8756-3282(02)00801-3
30.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Zhang
,
J.
, and
Triantafillou
,
T. C.
,
1989
, “
Failure Surfaces for Cellular Materials Under Multiaxial Loads-I. Modelling
,”
Int. J. Mech. Sci.
,
31
(
9
), pp.
635
663
.10.1016/S0020-7403(89)80001-3
31.
Zysset
,
P. K.
, and
Rincon-Kohli
,
L.
,
2006
, “
An Alternative Fabric-Based Yield and Failure Criterion for Trabecular Bone
,”
Mechanics of Bilogical Tissue
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer
,
New York
, pp.
457
470
.
32.
Wu
,
R.
, and
Stachurski
,
Z.
,
1984
, “
Evaluation of the Normal Stress Interaction Parameter in the Tensor Polynomial Strength Theory for Anisotropic Materials
,”
J. Compos. Mater.
,
18
, pp.
456
463
.10.1177/002199838401800505
33.
Traintafillou
,
T. C.
,
Zhang
,
J.
,
Shercliff
,
T. L.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1989
, “
Failure Surfaces for Cellular Materials Under Multiaxial Loads. II. Comparison of Models With Experiment
,”
Int. J. Mech. Sci.
,
31
(
9
), pp.
665
678
.10.1016/S0020-7403(89)80002-5
34.
Wang
,
D.-A.
, and
Pan
,
J.
,
2006
, “
A Non-Quadratic Yield Function for Polymeric Foams
,”
Int. J. Plast.
,
22
, pp.
434
458
.10.1016/j.ijplas.2005.03.011
35.
Cezayirlioglu
,
H.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
,
1985
, “
Anisotropic Yield Behavior of Bone Under Combined Axial Force and Torque
,”
J. Biomech.
,
18
(
1
), pp.
61
69
.10.1016/0021-9290(85)90045-4
36.
Gioux
,
G.
,
McCormack
,
T. M.
, and
Gibson
,
L. J.
,
2000
, “
Failure of Aluminum Foams Under Multiaxial Loads
,”
Int. J. Mech. Sci.
,
42
, pp.
1097
1117
.10.1016/S0020-7403(99)00043-0
37.
Rottler
,
J.
, and
Robbins
,
M. O.
,
2001
, “
Yield Conditions for Deformation of Amorphous Polymer Glasses
,”
Phys. Rev. E
,
64
, p.
051801
.10.1103/PhysRevE.64.051801
38.
Brezny
,
R.
, and
Green
,
D. J.
,
1990
, “
Characterization of Edge Effects in Cellular Materials
,”
J. Mater. Sci.
,
25
(
11
), pp.
4571
4578
.10.1007/BF01129908
39.
Turner
,
C. H.
, and
Cowin
,
S. C.
,
1988
, “
Errors Introduced by Off-Axis Measurements of the Elastic Properties of Bone
,”
J. Biomech.
,
110
, pp.
213
214
.10.1115/1.3108433
40.
Triantafillou
,
T. C.
, and
Gibson
,
L. J.
,
1990
, “
Multiaxial Failure Criteria for Brittle Foams
,”
Int. J. Mech. Sci.
,
32
(
6
), pp.
479
496
.10.1016/0020-7403(90)90154-B
41.
Burr
,
D. B.
,
2002
, “
The Contribution of the Organic Matrix to Bone's Material Properties
,”
Bone
,
31
(
1
), pp.
8
11
.10.1016/S8756-3282(02)00815-3
42.
Milovanovic
,
P.
,
Potocnik
,
J.
,
Djonic
,
D.
,
Nikolic
,
S.
,
Zivkovic
, V
.
,
Djuric
,
M.
, and
Rakocevic
,
Z.
,
2012
, “
Age-Related Deterioration in Trabecular Bone Mechanical Properties at Material Level: Nanoindentation Study of the Femoral Neck in Women by Using AFM
,”
Exp. Gerontol.
,
47
(
2
), pp.
154
159
.10.1016/j.exger.2011.11.011
43.
Nawathe
,
S.
,
Juillard
,
F.
, and
Keaveny
,
T. M.
,
2013
, “
Theoretical Bounds for the Influence of Tissue-Level Ductility on the Apparent-Level Strength of Human Trabecular Bone
,”
J. Biomech.
,
46
(
7
), pp.
1293
1299
.10.1016/j.jbiomech.2013.02.011
44.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
The Role of an Effective Isotropic Tissue Modulus in the Elastic Properties of Cancellous Bone
,”
J. Biomech.
,
32
(
7
), pp.
673
680
.10.1016/S0021-9290(99)00045-7
45.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
(
11
), pp.
1009
1015
.10.1016/S0021-9290(98)00110-9
46.
Cowin
,
S.
, ed.,
2001
,
Bone Mechanics Handbook
,
CRC Press
,
Boca Raton, FL
.
47.
Gross
,
T.
,
Pahr
,
D. H.
,
Peyrin
,
F.
, and
Zysset
,
P. K.
,
2012
, “
Mineral Heterogeneity has a Minor Influence on the Apparent Elastic Properties of Human Cancellous Bone: a SRμCT-Based Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1137
1144
.10.1080/10255842.2011.581236
48.
Easley
,
S. K.
,
Jekir
,
M. G.
,
Burghardt
,
A. J.
,
Li
,
M.
, and
Keaveny
,
T. M.
,
2010
, “
Contribution of the Intra-Specimen Variations in Tissue Mineralization to PTH- and Raloxifene-Induced Changes in Stiffness of Rat Vertebrae
,”
Bone
,
46
(
4
), pp.
1162
1169
.10.1016/j.bone.2009.12.009
49.
Wang
,
C.
,
Feng
,
L.
, and
Jasiuk
,
I.
,
2009
, “
Scale and Boundary Conditions Effects on the Apparent Elastic Moduli of Trabecular Bone Modeled as a Periodic Cellular Solid
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
121008
.10.1115/1.4000192
You do not currently have access to this content.