The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy's law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction.

References

1.
Haft
,
J. W.
,
Griffith
,
B. P.
,
Hirschl
,
R. B.
, and
Bartlett
,
R. H.
,
2002
, “
Results of an Artificial-Lung Survey to Lung Transplant Program Directors
,”
J. Heart Lung Transplant
,
21
(
4
), pp.
467
473
.10.1016/S1053-2498(01)00378-3
2.
Zhang
,
J.
,
Nolan
,
T. D. C.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2007
, “
Characterization of Membrane Blood Oxygenation Devices Using Computational Fluid Dynamics
,”
J. Memb. Sci.
,
288
, pp.
268
279
.10.1016/j.memsci.2006.11.041
3.
Zhang
,
J.
,
Taskin
,
M. E.
,
Koert
,
A.
,
Zhang
,
T.
,
Gellman
,
B.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “
Computational Design and in Vitro Characterization of an Integrated Maglev Pump Oxygenator
,”
Artif. Organs
,
33
(
10
), pp.
805
817
.10.1111/j.1525-1594.2009.00807.x
4.
Bloembergen
,
W. E.
,
Stannard
,
D. C.
,
Port
,
F. K.
,
Wolfe
,
R. A.
,
Pugh
,
J. A.
,
Jones
,
C. A.
,
Greer
,
J. W.
,
Golper
,
T. A.
, and
Held
,
P. J.
,
1996
, “
Relationship of Dose of Hemodialysis and Cause-Specific Mortality
,”
Kidney Int.
,
50
(
2
), pp.
557
565
.10.1038/ki.1996.349
5.
Matsuda
,
N.
,
Nakamura
,
M.
,
Sakai
,
K.
,
Kuwana
,
K.
, and
Tahara
,
K.
,
1999
, “
Theoretical and Experimental Evaluation for Blood Pressure Drop and Oxygen Transfer Rate in Outside Blood Flow Membrane Oxygenator
,”
J. Chem. Eng. Jap.
,
32
(
6
), pp.
752
759
.10.1252/jcej.32.752
6.
Matsuda
,
N.
, and
Sakai
,
K.
,
2000
, “
Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator
,”
J. Memb. Sci.
,
170
(
2
), pp.
153
158
.10.1016/S0376-7388(00)00331-8
7.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
,
De Somer
,
F.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
,
2001
, “
Mass Transfer Characteristics of Artificial Lungs
,”
ASAIO J.
,
47
(
6
), pp.
628
633
.10.1097/00002480-200111000-00012
8.
Wickramasinghe
,
S. R.
,
Garcia
,
J. D.
, and
Han
,
B.
,
2002
, “
Mass and Momentum Transfer in Hollow Fibre Blood Oxygenators
,”
J. Memb. Sci.
,
208
(
1–2
), pp.
247
256
.10.1016/S0376-7388(02)00281-8
9.
Gartner
,
M. J.
,
Wilhelm
,
C. R.
,
Gage
,
K. L.
,
Fabrizio
,
M. C.
, and
Wagner
,
W. R.
,
2000
, “
Modeling Flow Effects on Thrombotic Deposition in a Membrane Oxygenator
,”
Artif. Organs
,
24
(
1
), pp.
29
36
.10.1046/j.1525-1594.2000.06384.x
10.
Gage
,
K. L.
,
Gartner
,
M. J.
,
Burgreen
,
G. W.
, and
Wagner
,
W. R.
,
2002
, “
Predicting Membrane Oxygenator Pressure Drop Using Computational Fluid Dynamics
,”
Artif. Organs
,
26
(
7
), pp.
600
607
.10.1046/j.1525-1594.2002.07082.x
11.
Funakubo
,
A.
,
Taga
,
I.
,
McGillicuddy
,
J. W.
,
Fukui
,
Y.
,
Hirschi
,
R. B.
, and
Bartlett
,
R. H.
,
2003
, “
Flow Vectorial Analysis in an Artificial Implantable Lung
,”
ASAIO J.
,
49
(
4
), pp.
383
387
.
12.
Sato
,
H.
,
Taga
,
I.
,
Kinoshita
,
T.
,
Funakubo
,
A.
,
Ichiba
,
S.
, and
Shimizu
,
N.
,
2006
, “
In Vitro Evaluation of a Newly Developed Implantable Artificial Lung
,”
Acta Med. Okayama
,
60
(
2
), pp.
113
119
.
13.
Zinovik
,
I. N.
, and
Federspiel
,
W. J.
,
2007
, “
Modeling of Blood Flow in a Balloon-Pulsed Intravascular Respiratory Catheter
,”
ASAIO J.
,
53
(
4
), pp.
464
468
.10.1097/MAT.0b013e31805fe96d
14.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Suresh
,
V.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
,
2006
, “
Pulsatile Flow and Mass Transport Past a Circular Cylinder
,”
Phys. Fluids
,
18
(
1
), pp.
1
15
.10.1063/1.2164475
15.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
, “
Pulsatile Flow and Mass Transport Past a Circular Cylinder
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
202
215
.10.1115/1.2485961
16.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Suresh
,
V.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
,
2006
, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
85
96
.10.1115/1.2133761
17.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Cook
,
K.
, and
Grotberg
,
J. B.
,
2008
, “
Pulsatile Flow and Oxygen Transport Past Cylindrical Fiber Arrays for an Artificial Lung: Computational and Experimental Studies
,”
ASME J. Biomech. Eng.
,
130
(
3
), pp.
1
12
.10.1115/1.2907752
18.
Dierickx
,
P. W.
,
de Wachter
,
D. S.
, and
Verdonck
,
P. R.
,
2001
, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lung
,”
Int. J. Artif. Organs
,
24
(
9
), pp.
628
635
.
19.
Mazaheri
,
A. R.
, and
Ahmadi
,
G.
,
2006
, “
Uniformity of the Flow Velocities Within Hollow Fiber Membranes of Blood Oxygenation Devices
,”
Artif. Organs
,
30
(
1
), pp.
10
15
.10.1111/j.1525-1594.2006.00150.x
20.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Micro-Scale Modeling of Flow and Oxygen Transfer in Hollow-Fiber Membrane Bundle
,”
J. Memb. Sci.
,
362
(
1–2
), pp.
172
183
.10.1016/j.memsci.2010.06.034
21.
Nagase
,
K.
,
Kohori
,
F.
, and
Sakai
,
K.
,
2005
, “
Oxygen Transfer Performance of a Membrane Oxygenator Composed of Crossed and Parallel Hollow Fibers
,”
Biochem. Eng. J.
,
24
(
2
), pp.
105
113
.10.1016/j.bej.2005.02.003
22.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
,
2009
, “
Oxygen and Carbon Dioxide Transport in Time-Dependent Blood Flow Past Fiber Rectangular Arrays
,”
Phys. Fluids
,
21
(
3
), p.
033101
.10.1063/1.3056413
23.
Bodnar
,
T.
,
Sequeira
,
A.
, and
Prosi
,
M.
,
2011
, “
On the Shear-Thinning and Viscoelastic Effects of Blood Flow Under Various Flow Rates
,”
Appl. Math. Comput.
,
217
(
11
), pp.
5055
5067
.10.1016/j.amc.2010.07.054
24.
Chen
,
J.
,
Lu
,
X. Y.
, and
Wang
,
W.
,
2006
, “
Non-Newtonian Effects of Blood Flow on Hemodynamics in Distal Vascular Graft Anastomoses
,”
J. Biomech.
,
39
(
11
), pp.
1983
1995
.10.1016/j.jbiomech.2005.06.012
25.
Gonzalez
,
H. A.
, and
Moraga
,
N. O.
,
2005
, “
On Predicting Unsteady Non-Newtonian Blood Flow
,”
Appl. Math. Comput.
,
170
(
2
), pp.
909
923
.10.1016/j.amc.2004.12.029
26.
Cioffi
,
M.
,
Boschetti
,
F.
,
Raimondi
,
M. T.
, and
Dubini
,
G.
,
2006
, “
Modeling Evaluation of the Fluid-Dynamic Microenvironment in Tissue-Engineered Constructs: A Micro-CT Based Model
,”
Biotechnol. Bioeng.
93
(
3
), pp.
500
510
.10.1002/bit.20740
27.
Wang
,
S.
, and
Tarbell
,
J. M.
,
2000
, “
Effect of Fluid Flow on Smooth Muscle Cells in a 3-Dimensional Collagen Gel Model
,”
Arterioscler., Thromb., Vasc. Biol.
,
20
(
10
), pp.
2220
2225
.10.1161/01.ATV.20.10.2220
28.
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1995
, “
Modeling Interstitial Flow in an Artery Wall Allows Estimation of Wall Shear Stress on Smooth Muscle Cells
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
358
363
.10.1115/1.2794192
29.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (DTE)—Design Optimization Methodology for Cardiovascular Devices: a Study in Two Bileaflet MHV Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
30.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.10.1016/S0006-3495(72)86085-5
31.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prosthesis – in Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
32.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu.
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.10.1115/1.4007092
33.
Wu
,
Z. J.
,
Taskin
,
M. E.
,
Zhang
,
T.
,
Fraser
,
K. H.
, and
Griffith
,
B. P.
,
2012
, “
Computational Model-Based Design of a Wearable Artificial Pump-Lung for Cardiopulmonary/Respiratory Support
,”
Artif. Organs
,
36
(
4
), pp.
387
399
.10.1111/j.1525-1594.2011.01369.x
34.
Fill
,
B.
,
Gartner
,
M.
,
Johnson
,
G.
,
Horner
,
M.
, and
Ma
,
J.
,
2008
, “
Computational Fluid Flow and Mass Transfer of a Functionally Integrated Pediatric Pump-Oxygenator Configuration
,”
ASAIO J.
,
54
(
2
), pp.
214
219
.10.1097/MAT.0b013e3181648d80
35.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
36.
De Wachter
,
D.
, and
Verdonck
,
P.
,
2002
, “
Numerical Calculation of Hemolysis Levels in Peripheral Hemodialysis Cannulas
,”
Artif. Organs
,
26
(
7
), pp.
576
582
.10.1046/j.1525-1594.2002.07079.x
37.
Ichinose
,
K.
,
Okamoto
,
T.
,
Tanimoto
,
H.
,
Yoshitake
,
A.
,
Tashiro
,
M.
,
Sakanashi
,
Y.
,
Kuwana
,
K.
,
Tahara
,
K.
,
Kamiya
,
M.
, and
Terasaki
,
H.
,
2004
, “
Comparison of a New Heparin-Coated Dense Membrane Lung With Nonheparin-Coated Dense Membrane Lung for Prolonged Extracorporeal Lung Assist in Goats
,”
Artif. Organs
,
28
(
11
), pp.
993
1001
.10.1111/j.1525-1594.2004.07312.x
38.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Hirshl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
J. B.
,
2007
, “
Pulsatile Blood Flow and Gas Exchange Across a Cylindrical Fiber Array
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
676
687
.10.1115/1.2768105
39.
Cioffi
,
M.
,
Boschetti
,
F.
,
Raimondi
,
M. T.
, and
Dubini
,
G.
,
2006
, “
Modeling Evaluation of the Fluid-Dynamic Microenvironment in Tissue-Engineered Constructs: A Micro-CT Based Model
,”
Biotechnol. Bioeng.
,
93
(
3
), pp.
500
510
.10.1002/bit.20740
40.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
,
1993
, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler Thromb.
,
13
(
12
), pp.
1806
1813
.10.1161/01.ATV.13.12.1806
41.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Loading Conditions Relevant to Devices
,”
Ann Biomed Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
You do not currently have access to this content.