The false vocal folds are hypothesized to affect the laryngeal flow during phonation. This hypothesis is tested both computationally and experimentally using rigid models of the human larynges. The computations are performed using an incompressible Navier–Stokes solver with a second order, sharp, immersed-boundary formulation, while the experiments are carried out in a wind tunnel with physiologic speeds and dimensions. The computational flow structures are compared with available glottal flow visualizations and are employed to study the vortex dynamics of the glottal flow. Furthermore, pressure data are collected on the surface of the laryngeal models experimentally and computationally. The investigation focuses on three geometric features: the size of the false vocal fold gap; the height between the true and false vocal folds; and the width of the laryngeal ventricle. It is shown that the false vocal fold gap has a significant effect on glottal flow aerodynamics, whereas the second and the third geometric parameters are of lesser importance. The link between pressure distribution on the surface of the larynx and false vocal fold geometry is discussed in the context of vortex evolution in the supraglottal region. It was found that the formation of the starting vortex considerably affects the pressure distribution on the surface of the larynx. The interaction of this vortex structure with false vocal folds creates rebound vortices in the laryngeal ventricle. In the cases of small false vocal fold gap, these rebound vortices are able to reach the true vocal folds during a time period comparable with one cycle of the phonation. Moreover, they can create complex vorticity patterns, which result in significant pressure fluctuations on the surface of the larynx.

References

1.
Stager
,
S.
,
2011
, “
The Role of the Supraglottic Area in Voice Production
,”
Otolaryngol.
,
2
(
S
), pp.
1
7
.
2.
Agarwal
,
M.
,
Scherer
,
R. C.
, and
Hollien
,
H.
,
2003
, “
The False Vocal Folds: Shape and Size in Frontal View During Phonation Based on Laminagraphic Tracings
,”
J. Voice
,
17
(
2
), pp.
97
113
.10.1016/S0892-1997(03)00012-2
3.
Chan
,
R. W.
,
Fu
,
M.
, and
Tirunagari
,
N.
,
2006
, “
Elasticity of the Human False Vocal Fold
,”
Ann. Otol. Rhinol. Laryngol.
,
115
(
5
), pp.
370
381
.
4.
Haji
,
T.
,
Mori
,
K.
,
Omori
,
K.
, and
Isshiki
,
N.
,
1992
, “
Mechanical-Properties of the Vocal Fold -Stress-Strain Studies
,”
Acta Oto-Laryngol.
,
112
(
3
), pp.
559
565
.10.3109/00016489209137440
5.
Fuks
,
L.
,
Hammarberg
,
B.
, and
Sundberg
,
J.
,
1998
, “
A Self-Sustained Vocal-Ventricular Phonation Mode: Acoustical, Aerodynamic and Glottographic Evidences
,”
KTH TMH-QPSR
,
3
, pp.
49
59
.
6.
Sakakibara
,
K. I.
,
Imagawa
,
H.
,
Konishi
,
T.
,
Kondo
,
K.
,
Murano
,
E. Z.
,
Kumada
,
M.
, and
Niimi
,
S.
,
2001
, “
Vocal Fold and False Vocal Fold Vibrations in Throat Singing and Synthesis of Khöömei
,”
Proceedings of the International Computer Music Conference
,
Havana, Cuba
, pp.
135
138
.
7.
Henrich
,
N.
,
Lortat-Jacob
,
B.
,
Castellengo
,
M.
,
Bailly
,
L.
, and
Pelorson
,
X.
,
2006
, “
Period-Doubling Occurrences in Singing: The ‘Bassu’ case in Traditional Sardinian ‘a Tenore’ singing
,”
ICVPB
(
2006
),
Tokyo
.
8.
Borch
,
D. Z.
,
Sundberg
,
J.
,
Lindestad
,
P. Å.
, and
Thalen
,
M.
,
2004
, “
Vocal Fold Vibration and Voice Source Aperiodicity In ‘Dist’ Tones: A Study of a Timbral Ornament in Rock Singing
,”
Logoped. Phoniatr. Vocol.
,
29
(
4
), pp.
147
153
.10.1080/14015430410016073
9.
Lindestad
,
P.-Å.
,
Blixt
,
V.
,
Pahlberg-Olsson
,
J.
, and
Hammarberg
,
B.
,
2004
, “
Ventricular Fold Vibration in Voice Production: A High-Speed Imaging Study With Kymographic, Acoustic and Perceptual Analyses of a Voice Patient and a Vocally Healthy Subject
,”
Logoped. Phoniatr. Vocol.
,
29
(
4
), pp.
162
170
.10.1080/14015430410020339
10.
Nasri
,
S.
,
Jasleen
,
J.
,
Gerratt
,
B. R.
,
Sercarz
,
J. A.
,
Wenokur
,
R.
, and
Berke
,
G. S.
,
1996
, “
Ventricular Dysphonia: A Case of False Vocal Fold Mucosal Traveling Wave
,”
Am. J. Otolaryngol.
,
17
(
6
), pp.
427
431
.10.1016/S0196-0709(96)90080-0
11.
Maryn
,
Y.
,
De Bodt
,
M. S.
, and
Van Cauwenberge
,
P.
,
2003
, “
Ventricular Dysphonia: Clinical Aspects and Therapeutic Options
,”
Laryngoscope
,
113
(
5
), pp.
859
866
.10.1097/00005537-200305000-00016
12.
Stager
,
S.
,
Bielamowicz
,
S.
,
Regnell
,
J.
,
Gupta
,
A.
, and
Barkmeier
,
J.
,
2000
, “
Supraglottic Activity: Evidence of Vocal Hyperfunction or Laryngeal Articulation?
,”
J. Speech Lang. Hear. Res.
,
43
(
1
), pp.
229
238
.
13.
Brunelle
,
M.
,
Nguyên
,
D. D.
, and
Nguyên
,
K. H.
,
2010
, “
A Laryngographic and Laryngoscopic Study of Northern Vietnamese Tones
,”
Phonetica
,
67
(
3
), pp.
147
169
.10.1159/000321053
14.
Kelchner
,
L. N.
,
Weinrich
,
B.
,
Brehm
,
S. B.
,
Tabangin
,
M. E.
, and
De Alarcon
,
A.
,
2010
, “
Characterization of Supraglottic Phonation in Children After Airway Reconstruction
,”
Ann. Otol. Rhinol. Laryngol.
,
119
(
6
), pp.
383
390
.
15.
Bielamowicz
,
S.
,
Kapoor
,
R.
,
Schwartz
,
J.
, and
Stager
,
S. V.
,
2004
, “
Relationship Among Glottal Area, Static Supraglottic Compression, and Laryngeal Function Studies in Unilateral Vocal Fold Paresis and Paralysis
,”
J. Voice
,
18
(
1
), pp.
138
145
.10.1016/j.jvoice.2003.11.005
16.
Chisari
,
N.
,
Artana
,
G.
, and
Sciamarella
,
D.
,
2011
, “
Vortex Dipolar Structures in a Rigid Model of the Larynx at Flow Onset
,”
Exp. Fluids
,
50
(
2
), pp.
397
406
.10.1007/s00348-010-0941-x
17.
Drechsel
,
J. S.
, and
Thomson
,
S. L.
,
2008
, “
Influence of Supraglottal Structures on the Glottal Jet Exiting a Two-Layer Synthetic, Self-Oscillating Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
123
(
6
), pp.
4434
4445
.10.1121/1.2897040
18.
Mittal
,
R.
,
Erath
,
B. D.
, and
Plesniak
,
M. W.
,
2013
, “
Fluid Dynamics of Human Phonation and Speech
,”
Ann. Rev. Fluid Mech.
,
45
(
1
), pp.
437
467
.10.1146/annurev-fluid-011212-140636
19.
Kucinschi
,
B. R.
,
Scherer
,
R. C.
,
Dewitt
,
K. J.
, and
Ng
,
T. T. M.
,
2006
, “
Flow Visualization and Acoustic Consequences of the Air Moving Through a Static Model of the Human Larynx
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
380
390
.10.1115/1.2187042
20.
Li
,
S.
,
Wan
,
M.
, and
Wang
,
S.
,
2008
, “
The Effects of the False Vocal Fold Gaps on Intralaryngeal Pressure Distributions and Their Effects on Phonation
,”
Sci. China Ser. C: Life Sci.
,
51
(
11
), pp.
1045
1051
.10.1007/s11427-008-0128-3
21.
Triep
,
M.
, and
Brücker
,
C.
,
2010
, “
Three-Dimensional Nature of the Glottal Jet
,”
J. Acoust. Soc. Am.
,
127
, pp.
1537
1547
.10.1121/1.3299202
22.
Zheng
,
X.
,
Bielamowicz
,
S.
,
Luo
,
H.
, and
Mittal
,
R.
,
2009
, “
A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
625
642
.10.1007/s10439-008-9630-9
23.
Alipour
,
F.
,
Jaiswal
,
S.
, and
Finnegan
,
E.
,
2007
, “
Aerodynamic and Acoustic Effects of False Vocal Folds and Epiglottis in Excised Larynx Models
,”
Ann. Otol. Rhinol. Laryngol.
,
116
(
2
), pp.
135
144
.
24.
Alipour
,
F.
, and
Scherer
,
R. C.
,
2002
, “
Pressure and Velocity Profiles in a Static Mechanical Hemilarynx Model
,”
J. Acoust. Soc. Am.
,
112
(
6
), pp.
2996
3003
.10.1121/1.1519540
25.
Cattafesta
,
L.
,
Williams
,
D.
,
Rowley
,
C.
, and
Alvi
,
F.
,
2003
, “
Review of Active Control of Flow-Induced Cavity Resonance
,”
AIAA Paper No. 2003-3567
.
26.
Zhang
,
C.
,
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
,
2002
, “
Computational Aeroacoustics of Phonation, Part II: Effects of Flow Parameters and Ventricular Folds
,”
J. Acoust. Soc. Am.
,
112
, pp.
2147
2154
.10.1121/1.1506694
27.
Mcgowan
,
R. S.
, and
Howe
,
M. S.
,
2010
, “
Influence of the Ventricular Folds on a Voice Source With Specified Vocal Fold Motion
,”
J. Acoust. Soc. Am.
,
127
, pp.
1519
1527
.10.1121/1.3299200
28.
Faure
,
T.
,
Adrianos
,
P.
,
Lusseyran
,
F.
, and
Pastur
,
L.
,
2007
, “
Visualizations of the Flow Inside an Open Cavity at Medium Range Reynolds Numbers
,”
Exp. Fluids
,
42
(
2
), pp.
169
184
.10.1007/s00348-006-0188-8
29.
Ozalp
,
C.
,
Pinarbasi
,
A.
, and
Sahin
,
B.
,
2010
, “
Experimental Measurement of Flow Past Cavities of Different Shapes
,”
Exp. Therm. Fluid Sci.
,
34
(
5
), pp.
505
515
.10.1016/j.expthermflusci.2009.11.003
30.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University
,
Cambridge, England
.
31.
Udaykumar
,
H.
,
Krishnan
,
S.
, and
Marella
,
S. V.
,
2009
, “
Adaptively Refined, Parallelised Sharp Interface Cartesian Grid Method for Three-Dimensional Moving Boundary Problems
,”
Int. J. Comput. Fluid Dyn.
,
23
(
1
), pp.
1
24
.10.1080/10618560802660379
32.
Orlandi
,
P.
,
1990
, “
Vortex Dipole Rebound From a Wall
,”
Phys. Fluids A
,
2
(
8
), pp.
1429
1436
.10.1063/1.857591
33.
Chu
,
C.-C.
,
Wang
,
C.-T.
, and
Hsieh
,
C.-S.
,
1993
, “
An Experimental Investigation of Vortex Motions Near Surfaces
,”
Phys. Fluids A
,
5
(
3
), pp.
662
676
.10.1063/1.858650
34.
Schwarze
,
R.
,
Mattheus
,
W.
,
Klostermann
,
J.
, and
Brücker
,
C.
,
2011
, “
Starting Jet Flows in a Three-Dimensional Channel With Larynx-Shaped Constriction
,”
Comput. Fluids
,
48
(
1
), pp.
68
83
.10.1016/j.compfluid.2011.03.016
35.
Zheng
,
X.
,
Mittal
,
R.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Direct-Numerical Simulation of the Glottal Jet and Vocal-Fold Dynamics in a Three-Dimensional Laryngeal Model
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
404
415
.10.1121/1.3592216
36.
Neubauer
,
J.
,
Zhang
,
Z.
,
Miraghaie
,
R.
, and
Berry
,
D. A.
,
2007
, “
Coherent Structures of the Near Field Flow in a Self-Oscillating Physical Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
121
, pp.
1102
1118
.10.1121/1.2409488
37.
Xue
,
Q.
,
Mittal
,
R.
,
Zheng
,
X.
, and
Bielamowicz
,
S.
,
2012
, “
Computational Modeling of Phonatory Dynamics in a Tubular Three-Dimensional Model of the Human Larynx
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1602
1613
.10.1121/1.4740485
38.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.10.1017/S0022112097008410
39.
Link
,
G.
,
Kaltenbacher
,
M.
,
Breuer
,
M.
, and
Döllinger
,
M.
,
2009
, “
A 2D Finite-Element Scheme for Fluid–Solid–Acoustic Interactions and Its Application to Human Phonation
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41
), pp.
3321
3334
.10.1016/j.cma.2009.06.009
40.
Steinecke
,
I.
, and
Herzel
,
H.
,
1995
, “
Bifurcations in an Asymmetric Vocal-Fold Model
,”
J. Acoust. Soc. Am.
,
97
(
3
), pp.
1874
1884
.10.1121/1.412061
41.
Agarwal
,
M.
,
Scherer
,
R.
, and
Witt
,
K. D.
,
2001
, “
Effects of False Vocal Fold Width on Translaryngeal Flow Resistance
,”
Proceedings of the International Conference on Voice Physiology and Biomechanics: Modeling Complexity, Marseille, France, August 2004.
42.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
,
2001
, “
Intraglottal Pressure Profiles for a Symmetric and Oblique Glottis With a Divergence Angle of 10 Degrees
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1616
1630
.10.1121/1.1333420
43.
Alipour
,
F.
, and
Scherer
,
R. C.
,
2001
, “
Effects of Oscillation of a Mechanical Hemilarynx Model on Mean Transglottal Pressures and Flows
,”
J. Acoust. Soc. Am.
,
110
(
3
), pp.
1562
1569
.10.1121/1.1396334
You do not currently have access to this content.