This is the second article of a two-part paper, combining high-resolution computer simulation results of inhaled nanoparticle deposition in a human airway model (Kolanjiyil and Kleinstreuer, 2013, “Nanoparticle Mass Transfer From Lung Airways to Systemic Regions—Part I: Whole-Lung Aerosol Dynamics,” ASME J. Biomech. Eng., 135(12), p. 121003) with a new multicompartmental model for insoluble nanoparticle barrier mass transfer into systemic regions. Specifically, it allows for the prediction of temporal nanoparticle accumulation in the blood and lymphatic systems and in organs. The multicompartmental model parameters were determined from experimental retention and clearance data in rat lungs and then the validated model was applied to humans based on pharmacokinetic cross-species extrapolation. This hybrid simulator is a computationally efficient tool to predict the nanoparticle kinetics in the human body. The study provides critical insight into nanomaterial deposition and distribution from the lungs to systemic regions. The quantitative results are useful in diverse fields such as toxicology for exposure-risk analysis of ubiquitous nanomaterial and pharmacology for nanodrug development and targeting.

References

References
1.
Oberdörster
,
G.
,
1988
, “
Lung Clearance of Inhaled Insoluble and Soluble Particles
,”
J. Aerosol Med.
,
1
(
4
), pp.
289
330
.10.1089/jam.1988.1.289
2.
Kreyling
,
W.
,
1990
, “
Interspecies Comparison of Lung Clearance of “Insoluble” Particles
,”
J. Aerosol Med.
,
3
(
1
), pp.
93
110
.10.1089/jam.1990.3.Suppl_1.S-93
3.
Kreyling
,
W. G.
,
Semmler
,
M.
, and
Möller
,
W.
,
2004
, “
Dosimetry and Toxicology of Ultrafine Particles
,”
J. Aerosol Med.
,
17
(
2
), pp.
140
152
.10.1089/0894268041457147
4.
Geiser
,
M.
and
Kreyling
,
W. G.
,
2010
, “
Deposition and Biokinetics of Inhaled Nanoparticles
,”
Part. Fibre Toxicol
,
7
(
2
), pp.
1
17
.10.1186/1743-8977-7-2
5.
Oberdörster
,
G.
,
Sharp
,
Z.
,
Atudorei
,
V.
,
Elder
,
A.
,
Gelein
,
R.
,
Lunts
,
A.
,
Kreyling
,
W.
, and
Cox
,
C.
,
2002
, “
Extrapulmonary Translocation of Ultrafine Carbon Particles Following Whole-Body Inhalation Exposure of Rats
,”
J. Toxicol. Environ. Health, Part A
,
65
(
20
), pp.
1531
1543
.10.1080/00984100290071658
6.
Geiser
,
M.
,
Casaulta
,
M.
,
Kupferschmid
,
B.
,
Schulz
,
H.
,
Semmler-Behnke
,
M.
, and
Kreyling
,
W.
,
2008
, “
The Role of Macrophages in the Clearance of Inhaled Ultrafine Titanium Dioxide Particles
.”
Am. J. Respir. Cell Mol. Biol.
,
38
(
3
), pp.
371
376
.10.1165/rcmb.2007-0138OC
7.
Brown
,
J. S.
,
Zeman
,
K. L.
, and
Bennett
,
W. D.
,
2002
, “
Ultrafine Particle Deposition and Clearance in the Healthy and Obstructed Lung
,”
Am. J. Respir. Crit. Care Med.
,
166
(
9
), pp.
1240
1247
.10.1164/rccm.200205-399OC
8.
Klepczynska-Nyström
,
A.
,
Sanchez-Crespo
,
A.
,
Andersson
,
M.
,
Falk
,
R.
,
Lundin
,
A.
,
Larsson
,
B.
, and
Svartengren
,
M.
,
2012
, “
The Pulmonary Deposition and Retention of Indium-111 Labeled Ultrafine Carbon Particles in Healthy Individuals
,”
Inhalation Toxicol.
,
24
(
10
), pp.
645
651
.10.3109/08958378.2012.708065
9.
Mills
,
N. L.
,
Amin
,
N.
,
Robinson
,
S. D.
,
Anand
,
A.
,
Davies
,
J.
,
Patel
,
D.
,
Jesus
,
M.
,
Cassee
,
F. R.
,
Boon
,
N. A.
, and
MacNee
,
W.
,
2006
, “
Do Inhaled Carbon Nanoparticles Translocate Directly Into the Circulation in Humans?
,”
Am. J. Respir. Crit. Care Med.
,
173
(
4
), pp.
426
431
.10.1164/rccm.200506-865OC
10.
Möller
,
W.
,
Felten
,
K.
,
Sommerer
,
K.
,
Scheuch
,
G.
,
Meyer
,
G.
,
Meyer
,
P.
,
Häussinger
,
K.
, and
Kreyling
,
W. G.
,
2008
, “
Deposition, Retention, and Translocation of Ultrafine Particles From the Central Airways and Lung Periphery
,”
Am. J. Respir. Crit. Care Med.
,
177
(
4
), pp.
426
432
.10.1164/rccm.200602-301OC
11.
Nemmar
,
A.
,
Hoet
,
P. H. M.
,
Vanquickenborne
,
B.
,
Dinsdale
,
D.
,
Thomeer
,
M.
,
Hoylaerts
,
M.
,
Vanbilloen
,
H.
,
Mortelmans
,
L.
, and
Nemery
,
B.
,
2002
, “
Passage of Inhaled Particles Into the Blood Circulation in Humans
,”
Circulation
,
105
(
4
), pp.
411
414
.10.1161/hc0402.104118
12.
Roth
,
C.
,
Scheuch
,
G.
, and
Stahlhofen
,
W.
,
1993
, “
Clearance of the Human Lungs for Ultrafine Particles
,”
J. Aerosol Sci.
,
24
(,
1
), pp.
S95
-
S96
.10.1016/0021-8502(93)90140-5
13.
Semmler
,
M.
,
Seitz
,
J.
,
Erbe
,
F.
,
Mayer
,
P.
,
Heyder
,
J.
,
Oberdörster
,
G.
, and
Kreyling
,
W.
,
2004
, “
Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles From the Rat Lung, Including Transient Translocation Into Secondary Organs
,”
Inhalation Toxicol.
,
16
(
6-7
), pp.
453
459
.10.1080/08958370490439650
14.
Semmler-Behnke
,
M.
,
Takenaka
,
S.
,
Fertsch
,
S.
,
Wenk
,
A.
,
Seitz
,
J.
,
Mayer
,
P.
,
Oberdörster
,
G.
, and
Kreyling
,
W. G.
,
2007
, “
Efficient Elimination of Inhaled Nanoparticles From the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment Onto Airways Epithelium
,”
Environ. Health Perspect.
,
115
(
5
), pp.
728
733
.10.1289/ehp.9685
15.
Takenaka
,
S.
,
Karg
,
E.
,
Kreyling
,
W.
,
Lentner
,
B.
,
Möller
,
W.
,
Behnke-Semmler
,
M.
,
Jennen
,
L.
,
Walch
,
A.
,
Michalke
,
B.
, and
Schramel
,
P.
,
2006
, “
Distribution Pattern of Inhaled Ultrafine Gold Particles in the Rat Lung
,”
Inhalation Toxicol.
,
18
(
10
), pp.
733
740
.10.1080/08958370600748281
16.
Kreyling
,
W.
,
Semmler
,
M.
,
Erbe
,
F.
,
Mayer
,
P.
,
Takenaka
,
S.
,
Schulz
,
H.
,
Oberdörster
,
G.
, and
Ziesenis
,
A.
,
2002
, “
Translocation of Ultrafine Insoluble Iridium Particles From Lung Epithelium to Extrapulmonary Organs is Size Dependent but Very Low
,”
J. Toxicol. Environ. Health, Part A
,
65
(
20
), pp.
1513
1530
.10.1080/00984100290071649
17.
Ferin
,
J.
,
Oberdörster
,
G.
, and
Penney
,
D.
,
1992
, “
Pulmonary Retention of Ultrafine and Fine Particles in Rats.
Am. J. Respir. Cell Mol. Biol.
,
6
(
5
), pp.
535
542
.10.1165/ajrcmb/6.5.535
18.
Elder
,
A.
,
Gelein
,
R.
,
Silva
,
V.
,
Feikert
,
T.
,
Opanashuk
,
L.
,
Carter
,
J.
,
Potter
,
R.
,
Maynard
,
A.
,
Ito
,
Y.
, and
Finkelstein
,
J.
,
2006
, “
Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System
,”
Environ. Health Perspect.
,
114
(
8
), pp.
1172
1178
.10.1289/ehp.9030
19.
Oberdörster
,
G.
,
Sharp
,
Z.
,
Atudorei
,
V.
,
Elder
,
A.
,
Gelein
,
R.
,
Kreyling
,
W.
, and
Cox
,
C.
,
2004
, “
Translocation of Inhaled Ultrafine Particles to the Brain
,”
Inhalation Toxicol.
,
16
(
6-7
), pp.
437
445
.10.1080/08958370490439597
20.
Wang
,
J.
,
Chen
,
C.
,
Yu
,
H.
,
Sun
,
J.
,
Li
,
B.
,
Li
,
Y.
,
Gao
,
Y.
,
He
,
W.
,
Huang
,
Y.
, and
Chai
,
Z.
,
2007
, “
Distribution of TiO 2 Particles in the Olfactory Bulb of Mice After Nasal Inhalation Using Microbeam SRXRF Mapping Techniques
,”
J. Radioanal. Nucl. Chem.
,
272
(
3
), pp.
527
531
.10.1007/s10967-007-0617-z
21.
Enderle
,
J. D.
and
Bronzino
,
J. D.
,
2011
,
Introduction to Biomedical Engineering
,
Academic
,
New York
.
22.
ICRP
,
1994
, “
Human Respiratory Tract Model for Radiological Protection
,”
Ann. ICRP
,
24
, pp.
1
3
, Publication No. 66.
23.
Tran
,
C.
,
Jones
,
A.
,
Cullen
,
R.
, and
Donaldson
,
K.
,
1999
, “
Mathematical Modeling of the Retention and Clearance of Low-Toxicity Particles in the Lung
,”
Inhalation Toxicol.
,
11
(
12
), pp.
1059
1076
.10.1080/089583799196592
24.
Kuempel
,
E. D.
,
O'Flaherty
,
E. J.
,
Stayner
,
L. T.
,
Smith
,
R. J.
,
Green
,
F.
, and
Vallyathan
,
V.
,
2001
, “
A Biomathematical Model of Particle Clearance and Retention in the Lungs of Coal Miners
.”
Regul. Toxicol. Pharmacol.
,
34
(
1
), pp.
69
87
.10.1006/rtph.2001.1479
25.
MacCalman
,
L.
,
Tran
,
C.
, and
Kuempel
,
E.
,
2009
, “
Development of a Bio-Mathematical Model in Rats to Describe Clearance, Retention and Translocation of Inhaled Nano Particles Throughout the Body
,”
J. Phys.: Conf. Ser.
, ed.
151
, p.
012028
.10.1088/1742-6596/151/1/012028
26.
Sturm
,
R.
,
2007
, “
A Computer Model for the Clearance of Insoluble Particles From the Tracheobronchial Tree of the Human Lung
,”
Comput. Biol. Med.
,
37
(
5
), pp.
680
690
.10.1016/j.compbiomed.2006.06.004
27.
Corley
,
R. A.
,
Kabilan
,
S.
,
Kuprat
,
A. P.
,
Carson
,
J. P.
,
Minard
,
K. R.
,
Jacob
,
R. E.
,
Timchalk
,
C.
,
Glenny
,
R.
,
Pipavath
,
S.
, and
Cox
,
T.
,
2012
, “
Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human
,”
Toxicol. Sci.
,
128
(
2
), pp.
500
516
.10.1093/toxsci/kfs168
28.
Schroeter
,
J. D.
,
Kimbell
,
J. S.
,
Gross
,
E. A.
,
Willson
,
G. A.
,
Dorman
,
D. C.
,
Tan
,
Y.
, and
Clewell
,
H. J.
III
,
2008
, “
Application of Physiological Computational Fluid Dynamics Models to Predict Interspecies Nasal Dosimetry of Inhaled Acrolein
,”
Inhalation Toxicol.
,
20
(
3
), pp.
227
243
.10.1080/08958370701864235
29.
Kolanjiyil
,
A. V.
and
Kleinstreuer
,
C.
,
2013
, “
Nanoparticle Mass Transfer From Lung Airways to Systemic Regions—Part I: Whole-Lung Aerosol Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121003
.
30.
Kuempel
,
E.
and
Tran
,
C.
,
2002
, “
Comparison of Human Lung Dosimetry Models: Implications for Risk Assessment
,”
Ann. Occup. Hyg.
,
46
(
1
), pp.
337
341
.10.1093/annhyg/46.suppl_1.337
31.
Brown
,
J. S.
,
Wilson
,
W. E.
, and
Grant
,
L. D.
,
2005
, “
Dosimetric Comparisons of Particle Deposition and Retention in Rats and Humans
,”
Inhalation Toxicol.
,
17
(
7-8
), pp.
355
385
.10.1080/08958370590929475
32.
Kolanjiyil
,
A. V.
,
2013
, “
Deposited Nanomaterial Mass Transfer From Lung Airways to Systemic Regions
,” M.S. thesis, North Carolina State University, Raleigh.
33.
Zhu
,
M.
,
Feng
,
W.
,
Wang
,
Y.
,
Wang
,
B.
,
Wang
,
M.
,
Ouyang
,
H.
,
Zhao
,
Y.
, and
Chai
,
Z.
,
2009
, “
Particokinetics and Extrapulmonary Translocation of Intratracheally Instilled Ferric Oxide Nanoparticles in Rats and the Potential Health Risk Assessment
,”
Toxicol. Sci.
,
107
(
2
), pp.
342
351
.10.1093/toxsci/kfn245
34.
Hofmann
,
W.
and
Asgharian
,
B.
,
2003
, “
The Effect of Lung Structure on Mucociliary Clearance and Particle Retention in Human and Rat Lungs
,”
Toxicol. Sci.
,
73
(
2
), pp.
448
456
.10.1093/toxsci/kfg075
35.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.10.1126/science.276.5309.122
36.
Hill
,
A. V.
,
1950
, “
The Dimensions of Animals and Their Muscular Dynamics
,”
Sci. Prog.
,
38
(
150
), pp.
209
230
.
37.
Dedrick
,
R. L.
,
1973
, “
Animal Scale-Up
,”
J. Pharmacokinet. Pharmacodyn.
,
1
(
5
), pp.
435
461
.10.1007/BF01059667
38.
Boxenbaum
,
H.
,
1982
, “
Interspecies Scaling, Allometry, Physiological Time, and the Ground Plan of Pharmacokinetics
,”
J. Pharmacokinet. Pharmacodyn.
,
10
(
2
), pp.
201
227
.10.1007/BF01062336
39.
Mordenti
,
J.
,
1986
, “
Man Versus Beast: Pharmacokinetic Scaling in Mammals
,”
J. Pharm. Sci.
,
75
(
11
), pp.
1028
1040
.10.1002/jps.2600751104
40.
Travis
,
C. C.
,
White
,
R. K.
, and
Ward
,
R. C.
,
1990
, “
Interspecies Extrapolation of Pharmacokinetics
,”
J. Theor. Biol.
,
142
(
3
), pp.
285
304
.10.1016/S0022-5193(05)80554-5
41.
U.S. Environmental Protection Agency
,
1992
, “
Draft Report: A Cross-Species Scaling Factor for Carcinogen Risk Assessment Based on Equivalence of mg/Kg3/4/Day: Notice
,”
Fed. Regist.
,
57
, pp.
21152
24173
.
42.
Dedrick
,
R.
,
Bischoff
,
K.
, and
Zaharko
,
D.
,
1970
, “
Interspecies Correlation of Plasma Concentration History of Methotrexate (NSC-740)
,”
Cancer Chemother. Rep.
,
54
(
2
), pp.
95
101
.
43.
Bailey
,
M.
,
Kreyling
,
W.
,
Andre
,
S.
,
Batchelor
,
A.
,
Collier
,
C.
,
Drosselmeyer
,
E.
,
Ferron
,
G.
,
Foster
,
P.
,
Haider
,
B.
, and
Hodgson
,
A.
,
1989
, “
An Interspecies Comparison of the Lung Clearance of Inhaled Monodisperse Cobalt Oxide Particles—Part I: Objectives and Summary of Results
,”
J. Aerosol Sci.
,
20
(
2
), pp.
169
188
.10.1016/0021-8502(89)90042-6
44.
Kreyling
,
W.
,
Hodgson
,
A.
,
Guilmette
,
R.
,
Scarlett
,
C.
,
Badmin
,
A.
, and
Stradling
,
G.
,
1998
, “
Interspecies Comparison of Lung Clearance Using Monodisperse Terbium Oxide Particles
,”
Radiat. Prot. Dosimet.
,
79
(
1-4
), pp.
241
243
.10.1093/oxfordjournals.rpd.a032401
45.
Tran
,
C. L.
,
Graham
,
M.
, and
Buchanan
,
D.
,
2001
, “
A Biomathematical Model for Rodent and Human Lung Describing Exposure, Dose, and Response to Inhaled Silica
,” Iom Research Report No. TM 4.
46.
Seaton
,
A.
,
Godden
,
D.
,
MacNee
,
W.
, and
Donaldson
,
K.
,
1995
, “
Particulate Air Pollution and Acute Health Effects
,”
Lancet
,
345
(
8943
), pp.
176
178
.10.1016/S0140-6736(95)90173-6
You do not currently have access to this content.