This is a two-part paper describing inhaled nanoparticle (NP) transport and deposition in a model of a human respiratory tract (Part I) as well as NP-mass transfer across barriers into systemic regions (Part II). Specifically, combining high-resolution computer simulation results of inhaled NP deposition in the human airways (Part I) with a multicompartmental model for NP-mass transfer (Part II) allows for the prediction of temporal NP accumulation in the blood and lymphatic systems as well as in organs. An understanding of nanoparticle transport and deposition in human respiratory airways is of great importance, as exposure to nanomaterial has been found to cause serious lung diseases, while the use of nanodrugs may have superior therapeutic effects. In Part I, the fluid-particle dynamics of a dilute NP suspension was simulated for the entire respiratory tract, assuming steady inhalation and planar airways. Thus, a realistic airway configuration was considered from nose/mouth to generation 3, and then an idealized triple-bifurcation unit was repeated in series and parallel to cover the remaining generations. Using the current model, the deposition of NPs in distinct regions of the lung, namely extrathoracic, bronchial, bronchiolar, and alveolar, was calculated. The region-specific NP-deposition results for the human lung model were used in Part II to determine the multicompartmental model parameters from experimental retention and clearance data in human lungs. The quantitative, experimentally validated results are useful in diverse fields, such as toxicology for exposure-risk analysis of ubiquitous nanomaterial as well as in pharmacology for nanodrug development and targeting.

References

References
1.
Card
,
J. W.
,
Zeldin
,
D. C.
,
Bonner
,
J. C.
, and
Nestmann
,
E. R.
,
2008
, “
Pulmonary Applications and Toxicity of Engineered Nanoparticles
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
,
295
(
3
), pp.
L400
L411
.10.1152/ajplung.00041.2008
2.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2004
, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
,
198
(
1
), pp.
178
210
.10.1016/j.jcp.2003.11.034
3.
Oberdörster
,
G.
,
Sharp
,
Z.
,
Atudorei
,
V.
,
Elder
,
A.
,
Gelein
,
R.
,
Lunts
,
A.
,
Kreyling
,
W.
, and
Cox
,
C.
,
2002
, “
Extrapulmonary Translocation of Ultrafine Carbon Particles Following Whole-Body Inhalation Exposure of Rats
,”
J. Toxicol. Environ. Health
,
65
(
20
), pp.
1531
1543
.10.1080/00984100290071658
4.
Kreyling
,
W. G.
,
Semmler-Behnke
,
M.
,
Takenaka
,
S.
, and
Möller
,
W.
,
2012
, “
Differences in the Biokinetics of Inhaled Nano-Versus Micrometer-Sized Particles
,”
Acc. Chem. Res.
,
46
(
3
), pp.
714
722
.10.1021/ar300043r
5.
Geiser
,
M.
,
2010
, “
Update on Macrophage Clearance of Inhaled Micro-and Nanoparticles
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
23
(
4
), pp.
207
217
.10.1089/jamp.2009.0797
6.
Geiser
,
M.
, and
Kreyling
,
W. G.
,
2010
, “
Deposition and Biokinetics of Inhaled Nanoparticles
,”
Part Fibre Toxicol.
,
7
(
2
), pp.
1
17
.10.1186/1743-8977-7-2
7.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2010
, “
Airflow and Particle Transport in the Human Respiratory System
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
301
334
.10.1146/annurev-fluid-121108-145453
8.
Azarmi
,
S.
,
Roa
,
W. H.
, and
Löbenberg
,
R.
,
2008
, “
Targeted Delivery of Nanoparticles for the Treatment of Lung Diseases
,”
Adv. Drug Deliv. Rev.
,
60
(
8
), pp.
863
875
.10.1016/j.addr.2007.11.006
9.
Mansour
,
H. M.
,
Rhee
,
Y. S.
, and
Wu
,
X.
,
2009
, “
Nanomedicine in Pulmonary Delivery
,”
Int. J. Nanomedicine
,
4
, pp.
299
319
.10.2147/IJN.S4937
10.
BéruBé
,
K.
,
Balharry
,
D.
,
Sexton
,
K.
,
Koshy
,
L.
, and
Jones
,
T.
,
2007
, “
Combustion-Derived Nanoparticles: Mechanisms of Pulmonary Toxicity
,”
Clin. Exp. Pharmacol. Physiol.
,
34
(
10
), pp.
1044
1050
.10.1111/j.1440-1681.2007.04733.x
11.
Jayaraju
,
S.
,
Brouns
,
M.
,
Lacor
,
C.
,
Belkassem
,
B.
, and
Verbanck
,
S.
,
2008
, “
Large Eddy and Detached Eddy Simulations of Fluid Flow and Particle Deposition in a Human Mouth–Throat
,”
J. Aerosol Sci.
,
39
(
10
), pp.
862
875
.10.1016/j.jaerosci.2008.06.002
12.
Jin
,
H.
,
Fan
,
J.
,
Zeng
,
M.
, and
Cen
,
K.
,
2007
, “
Large Eddy Simulation of Inhaled Particle Deposition Within the Human Upper Respiratory Tract
,”
J. Aerosol Sci.
,
38
(
3
), pp.
257
268
.10.1016/j.jaerosci.2006.09.008
13.
Worth Longest
,
P.
, and
Vinchurkar
,
S.
,
2007
, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
,
40
(
2
), pp.
305
316
.10.1016/j.jbiomech.2006.01.006
14.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2009
, “
CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
271
285
.10.1007/s10439-008-9620-y
15.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2011
, “
Computational Analysis of Airflow and Nanoparticle Deposition in a Combined Nasal–Oral–Tracheobronchial Airway Model
,”
J. Aerosol Sci.
,
42
(
3
), pp.
174
194
.10.1016/j.jaerosci.2011.01.001
16.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2011
, “
Deposition of Naphthalene and Tetradecane Vapors in Models of the Human Respiratory System
,”
Inhalation Toxicol.
,
23
(
1
), pp.
44
57
.10.3109/08958378.2010.540261
17.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2011
, “
Laminar-to-Turbulent Fluid–Nanoparticle Dynamics Simulations: Model Comparisons and Nanoparticle-Deposition Applications
,”
Int. J. Numer. Method Biomed. Eng.
,
27
(
12
), pp.
1930
1950
.10.1002/cnm.1447
18.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2008
, “
Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
2095
2110
.10.1007/s10439-008-9583-z
19.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
,
2003
, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
374
390
.10.1114/1.1560632
20.
Tian
,
G.
,
Longest
,
P.
,
Su
,
G.
,
Walenga
,
R. L.
, and
Hindle
,
M.
,
2011
, “
Development of a Stochastic Individual Path (SIP) Model for Predicting the Tracheobronchial Deposition of Pharmaceutical Aerosols: Effects of Transient Inhalation and Sampling the Airways
,”
J. Aerosol Sci.
,
42
(
11
), pp.
781
799
.10.1016/j.jaerosci.2011.07.005
21.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2006
, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
,
34
(
11
), pp.
1691
1704
.10.1007/s10439-006-9184-7
22.
Lin
,
C.
,
Tawhai
,
M. H.
,
Mclennan
,
G.
, and
Hoffman
,
E. A.
,
2009
, “
Computational Fluid Dynamics
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
25
33
.10.1109/MEMB.2009.932480
23.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C. L.
,
2010
, “
Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition
,”
J. Biomech.
,
43
(
11
), pp.
2159
2163
.10.1016/j.jbiomech.2010.03.048
24.
Walters
,
D. K.
, and
Luke
,
W. H.
,
2010
, “
A Method for Three-Dimensional Navier–Stokes Simulations of Large-Scale Regions of the Human Lung Airway
,”
ASME J. Fluid Eng.
,
132
(
5
), p.
051101
.10.1115/1.4001448
25.
Rostami
,
A. A.
,
2009
, “
Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review
,”
Inhalation Toxicol.
,
21
(
4
), pp.
262
290
.10.1080/08958370802448987
26.
Shi
,
H.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2008
, “
Dilute Suspension Flow With Nanoparticle Deposition in a Representative Nasal Airway Model
,”
Phys. Fluids
,
20
(
1
), p.
013301
.10.1063/1.2833468
27.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2007
, “
Particle Deposition in the Human Tracheobronchial Airways Due to Transient Inspiratory Flow Patterns
,”
J. Aerosol Sci.
,
38
(
6
), pp.
625
644
.10.1016/j.jaerosci.2007.03.010
28.
Longest
,
P.
, and
Xi
,
J.
,
2007
, “
Computational Investigation of Particle Inertia Effects on Submicron Aerosol Deposition in the Respiratory Tract
,”
J. Aerosol Sci.
,
38
(
1
), pp.
111
130
.10.1016/j.jaerosci.2006.09.007
29.
Sznitman
,
J.
,
Heimsch
,
F.
,
Heimsch
,
T.
,
Rusch
,
D.
, and
Rosgen
,
T.
,
2007
, “
Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
658
665
.10.1115/1.2768109
30.
Oakes
,
J. M.
,
Day
,
S.
,
Weinstein
,
S. J.
, and
Robinson
,
R. J.
,
2010
, “
Flow Field Analysis in Expanding Healthy and Emphysematous Alveolar Models Using Particle Image Velocimetry
.”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021008
.10.1115/1.4000870
31.
Harding
, Jr.,
E. M.
, and
Robinson
,
R. J.
,
2010
, “
Flow in a Terminal Alveolar Sac Model With Expanding Walls Using Computational Fluid Dynamics
,”
Inhalation Toxicol.
,
22
(
8
), pp.
669
678
.10.3109/08958371003749939
32.
Berg
,
E. J.
,
Weisman
,
J. L.
,
Oldham
,
M. J.
, and
Robinson
,
R. J.
,
2010
, “
Flow Field Analysis in a Compliant Acinus Replica Model Using Particle Image Velocimetry (PIV)
,”
J. Biomech.
,
43
(
6
), pp.
1039
1047
.10.1016/j.jbiomech.2009.12.019
33.
Sznitman
,
J.
,
Heimsch
,
T.
,
Wildhaber
,
J. H.
,
Tsuda
,
A.
, and
Rosgen
,
T.
,
2009
, “
Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031010
.10.1115/1.3049481
34.
Li
,
Z.
and
Kleinstreuer
,
C.
,
2011
, “
Airflow Analysis in the Alveolar Region using the Lattice-Boltzmann Method
,”
Med. Biol. Eng. Comput.
,
49
(
4
), pp.
441
451
.10.1007/s11517-011-0743-1
35.
Ma
,
B.
, and
Darquenne
,
C.
,
2011
, “
Aerosol Deposition Characteristics in Distal Acinar Airways Under Cyclic Breathing Conditions
,”
J. Appl. Physiol.
,
110
(
5
), pp.
1271
1282
.10.1152/japplphysiol.00735.2010
36.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2009
, “
An Adjustable Triple-Bifurcation Unit Model for Air-Particle Flow Simulations in Human Tracheobronchial Airways
.”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021007
.10.1115/1.3005339
37.
Dailey
,
H. L.
, and
Ghadiali
,
S.
,
2007
, “
Fluid-Structure Analysis of Microparticle Transport in Deformable Pulmonary Alveoli
,”
J. Aerosol Sci.
,
38
(
3
), pp.
269
288
.10.1016/j.jaerosci.2007.01.001
38.
Jiang
,
J.
, and
Zhao
,
K.
,
2010
, “
Airflow and Nanoparticle Deposition in Rat Nose Under Various Breathing and Sniffing Conditions—A Computational Evaluation of the Unsteady and Turbulent Effect
,”
J. Aerosol Sci.
,
41
(
11
), pp.
1030
1043
.10.1016/j.jaerosci.2010.06.005
39.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Academic
,
New York
.
40.
Hansen
,
J. E.
, and
Ampaya
,
E. P.
,
1975
, “
Human Air Space Shapes, Sizes, Areas, and Volumes
,”
J. Appl. Physiol.
,
38
(
6
), pp.
990
995
.
41.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
(
2
), pp.
207
217
.
42.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
,
1995
, “
Deposition of Ultrafine Aerosols in the Head Airways During Natural Breathing and During Simulated Breath Holding Using Replicate Human Upper Airway Casts
,”
Aerosol Sci. Technol.
,
23
(
3
), pp.
465
474
.10.1080/02786829508965329
43.
Kelly
,
J. T.
,
Asgharian
,
B.
,
Kimbell
,
J. S.
, and
Wong
,
B. A.
,
2004
, “
Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. Part II: Ultrafine Particles
,”
Aerosol Sci. Technol.
,
38
(
11
), pp.
1072
1079
.10.1080/027868290883432
44.
Xi
,
J.
, and
Longest
,
P.
,
2008
, “
Numerical Predictions of Submicrometer Aerosol Deposition in the Nasal Cavity Using a Novel Drift Flux Approach
,”
Int. J. Heat Mass Transfer
,
51
(
23
), pp.
5562
5577
.10.1016/j.ijheatmasstransfer.2008.04.037
45.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
,
2003
, “
Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus
,”
J. Appl. Physiol.
,
95
(
2
), pp.
657
671
.10.1152/japplphysiol.00770.2002
46.
Cohen
,
B.
, and
Asgharian
,
B.
,
1990
, “
Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis
,”
J. Aerosol Sci.
,
21
(
6
), pp.
789
797
.10.1016/0021-8502(90)90044-X
47.
Finlay
,
W. H.
,
2001
,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
,
Academic
,
San Diego
.
You do not currently have access to this content.