The goal of this study was to establish a computational fluid dynamics model to investigate the effect of cyclic motion (i.e., bending and stretching) on coronary blood flow. The three-dimensional (3D) geometry of a 50-mm section of the left anterior descending artery (normal or with a 60% stenosis) was constructed based on anatomical studies. To describe the bending motion of the blood vessel wall, arbitrary Lagrangian–Eularian methods were used. To simulate artery bending and blood pressure change induced stretching, the arterial wall was modeled as an anisotropic nonlinear elastic solid using the five-parameter Mooney–Rivlin hyperelastic model. Employing a laminar model, the flow field was solved using the continuity equations and Navier–Stokes equations. Blood was modeled as an incompressible Newtonian fluid. A fluid–structure interaction approach was used to couple the fluid domain and the solid domain iteratively, allowing force and total mesh displacement to be transferred between the two domains. The results demonstrated that even though the bending motion of the coronary artery could significantly affect blood cell trajectory, it had little effect on flow parameters, i.e., blood flow velocity, blood shear stress, and wall shear stress. The shape of the stenosis (asymmetric or symmetric) hardly affected flow parameters either. However, wall normal stresses (axial, circumferential, and radial stress) can be greatly affected by the blood vessel wall motion. The axial wall stress was significantly higher than the circumferential and radial stresses, as well as wall shear stress. Therefore, investigation on effects of wall stress on blood vessel wall cellular functions may help us better understand the mechanism of mechanical stress induced cardiovascular disease.

References

References
1.
Martini
,
F. H.
,
Nath
,
J. L.
, and
Bartholomew
,
E. F.
,
2010
, “
Blood Vessels and Circulation
,”
Foundamentals of Anatomy and Physiology
,
9th ed.
,
Benjamin Cummings
,
Boston, MA
, pp.
707
763
.
2.
Kroll
,
M. H.
,
Hellums
,
J. D.
,
McIntire
,
L. V.
,
Schafer
,
A. I.
, and
Moake
,
J. L.
,
1996
, “
Platelets and Shear Stress
,”
Blood
,
88
(
5
), pp.
1525
1541
.
3.
Traub
,
O.
, and
Berk
,
B. C.
,
1998
, “
Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
(
5
), pp.
677
685
.10.1161/01.ATV.18.5.677
4.
Yin
,
W.
,
Shanmugavelayudam
,
S. K.
, and
Rubenstein
,
D. A.
,
2011
, “
The Effect of Physiologically Relevant Dynamic Shear Stress on Platelet and Endothelial Cell Activation
,”
Thromb. Res.
,
127
(
3
), pp.
235
241
.10.1016/j.thromres.2010.11.021
5.
Davies
,
P. F.
,
2007
, “
Endothelial Mechanisms of Flow-Mediated Athero-Protection and Susceptibility
,”
Circ. Res.
,
101
(
1
), pp.
10
12
.10.1161/CIRCRESAHA.107.156539
6.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
7.
Fung
,
Y. C.
,
1996
, “
Blood Flow in Arteries
,”
Biomechanics Circulation
,
2nd ed.
,
Springer
,
New York
, pp.
108
205
.
8.
Schilt
,
S.
,
Moore
,
J. E.
Jr.
,
Delfino
,
A.
, and
Meister
,
J. J.
,
1996
, “
The Effects of Time-Varying Curvature on Velocity Profiles in a Model of the Coronary Arteries
,”
J. Biomech.
,
29
(
4
), pp.
469
474
.10.1016/0021-9290(95)00082-8
9.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
Jr.
, and
Moore
,
J. E.
Jr.
,
1998
, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
944
954
.10.1114/1.113
10.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
,
2004
, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
(
11
), pp.
1767
1775
.10.1016/j.jbiomech.2004.01.021
11.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.10.1114/1.1560631
12.
Yang
,
C.
,
Bach
,
R. G.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
, and
Tang
,
D.
,
2009
, “
In Vivo IVUS-Based 3-D Fluid-Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties For Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE. Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.10.1109/TBME.2009.2025658
13.
Dodge
,
J. T.
Jr.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1988
, “
Intrathoracic Spatial Location of Specified Coronary Segments on the Normal Human Heart. Applications in Quantitative Arteriography, Assessment of Regional Risk and Contraction, and Anatomic Display
,”
Circulation
,
78
(
5 Pt 1
), pp.
1167
1180
.10.1161/01.CIR.78.5.1167
14.
Dodge
,
J. T.
Jr.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.10.1161/01.CIR.86.1.232
15.
Ramaswamy
,
S. D.
,
Vigmostad
,
S. C.
,
Wahle
,
A.
,
Lai
,
Y. G.
,
Olszewski
,
M. E.
,
Braddy
,
K. C.
,
Brennan
,
T. M.
,
Rossen
,
J. D.
,
Sonka
,
M.
, and
Chandran
,
K. B.
,
2004
, “
Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery With Arterial Motion
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1628
1641
.10.1007/s10439-004-7816-3
16.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodriguez-Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics, Vol. 1, Fundamentals
, eds.
E.
Stein
,
R.
de Borst
and
J. R.
Hughes
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
, pp.
1
24
.
17.
Husmann
,
L.
,
Leschka
,
S.
,
Desbiolles
,
L.
,
Schepis
,
T.
,
Gaemperli
,
O.
,
Seifert
,
B.
,
Cattin
,
P.
,
Frauenfelder
,
T.
,
Flohr
,
T. G.
,
Marincek
,
B.
,
Kaufmann
,
P. A.
, and
Alkadhi
,
H.
,
2007
, “
Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate—Implications for CT Image Reconstruction
,”
Radiology
,
245
(
2
), pp.
567
576
.10.1148/radiol.2451061791
18.
Kolandavel
,
M. K.
,
Fruend
,
E. T.
,
Ringgaard
,
S.
, and
Walker
,
P. G.
,
2006
, “
The Effects of Time Varying Curvature on Species Transport in Coronary Arteries
,”
Ann. Biomed. Eng.
,
34
(
12
), pp.
1820
1832
.10.1007/s10439-006-9188-3
19.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
,
2002
, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
,
35
(
12
), pp.
1533
1540
.10.1016/S0021-9290(02)00093-3
20.
Gong
,
X. Y.
, and
Riyad
,
M.
,
2002
, “
On Stress Analysis for a Hyperelastic Material
,”
ANSYS Conference 2002
,
Austin, TX
.
21.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.10.1114/B:ABME.0000042224.23927.ce
22.
Sidorov
,
S.
,
2007
, “
Finite Element Modeling of Human Artery Tissue With a Nonlinear Multi-Mechanism Inelastic Material
,” Ph.D. thesis, University of Pittsburg, Pittsburg, PA.
23.
ANSYS, Inc.
,
2009
, “
Coupled-Field Analysis Guide
,” Release 12.1, Canonsburg, PA. Available at: http://www.ansys.com.
24.
Shanmugavelayudam
,
S. K.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2010
, “
Effect of Geometrical Assumptions on Numerical Modeling of Coronary Blood Flow Under Normal and Disease Conditions
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061004
.10.1115/1.4001033
25.
Chandran
,
K. B.
,
Yoganathan
,
A. P.
, and
Rittgers
,
S. E.
,
2012
, “
Cardiovascular Physiology
,”
Biofluid Mechanics: The Human Circulation
,
2nd ed.
,
CRC Press, Taylor & Francis Group
.
Boca Raton, FL
, pp.
69
108
.
26.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
(
4
), pp.
1179
1187
.10.1161/01.CIR.87.4.1179
27.
Lee
,
K. W.
, and
Xu
,
X. Y.
,
2002
, “
Modelling of Flow and Wall Behaviour in a Mildly Stenosed Tube
,”
Med. Eng. Phys.
,
24
(
9
), pp.
575
586
.10.1016/S1350-4533(02)00048-6
28.
Gross
,
M. F.
, and
Friedman
,
M. H.
,
1998
, “
Dynamics of Coronary Artery Curvature Obtained From Biplane Cineangiograms
,”
J. Biomech.
,
31
(
5
), pp.
479
484
.10.1016/S0021-9290(98)00012-8
29.
Westerhof
,
N.
,
Boer
,
C.
,
Lamberts
,
R. R.
, and
Sipkema
,
P.
,
2006
, “
Cross-Talk Between Cardiac Muscle and Coronary Vasculature
,”
Physiol. Rev.
,
86
(
4
), pp.
1263
1308
.10.1152/physrev.00029.2005
30.
Downey
,
J. M.
, and
Kirk
,
E. S.
,
1975
, “
Inhibition of Coronary Blood Flow by a Vascular Waterfall Mechanism
,”
Circ. Res.
,
36
(
6
), pp.
753
760
.10.1161/01.RES.36.6.753
31.
Spaan
,
J. A.
,
Breuls
,
N. P.
, and
Laird
,
J. D.
,
1981
, “
Diastolic-Systolic Coronary Flow Differences Are Caused by Intramyocardial Pump Action in the Anesthetized Dog
,”
Circ. Res.
,
49
(
3
), pp.
584
593
.10.1161/01.RES.49.3.584
32.
Vis
,
M. A.
,
Sipkema
,
P.
, and
Westerhof
,
N.
,
1995
, “
Modeling Pressure-Area Relations of Coronary Blood Vessels Embedded in Cardiac Muscle in Diastole and Systole
,”
Am. J. Physiol.
,
268
(
6 Pt 2
), pp.
H2531
H2543
.
You do not currently have access to this content.