A new method for laboratory testing of human proximal femora in conditions simulating a sideways fall was developed. Additionally, in order to analyze the strain state in future cadaveric tests, digital image correlation (DIC) was validated as a tool for strain field measurement on the bone of the femoral neck. A fall simulator which included models for the body mass, combined lateral femur and pelvis mass, pelvis stiffness, and trochanteric soft tissue was designed. The characteristics of each element were derived and developed based on human data from the literature. The simulator was verified by loading a state-of-the-art surrogate femur and comparing the resulting force-time trace to published, human volunteer experiments. To validate the DIC, 20 human proximal femora were prepared with a strain rosette and speckle paint pattern, and loaded to 50% of their predicted failure load at a low compression rate. Strain rosettes were taken as the gold standard, and minimum principal strains from the DIC and the rosettes were compared using descriptive statistics. The initial slope of the force-time curve obtained in the fall simulator matched published human volunteer data, with local peaks superimposed in the model due to internal vibrations of the spring used to model the pelvis stiffness. Global force magnitude and temporal characteristics were within 2% of published volunteer experiments. The DIC minimum principal strains were found to be accurate to 127±239μɛ. These tools will allow more biofidelic laboratory simulation of falls to the side, and more detailed analysis of proximal femur failure mechanisms using human cadaver specimens.

References

References
1.
Braithwaite
,
R. S.
,
Col
,
N. F.
, and
Wong
,
J. B.
,
2003
, “
Estimating Hip Fracture Morbidity, Mortality and Costs
,”
J. Am. Geriatrics Soc.
,
51
(
3
), pp.
364
370
.10.1046/j.1532-5415.2003.51110.x
2.
Forsn
,
L.
,
Sgaard
,
A. J.
,
Meyer
,
H. E.
,
Edna
,
T.-H.
, and
Kopjar
,
B.
,
1999
. “
Survival After Hip Fracture: Short- and Long-Term Excess Mortality According to Age and Gender
,”
Osteoporosis Int.
,
10
(
1
), pp.
73
78
.10.1007/s001980050197
3.
Wiktorowicz
,
M. E.
,
Goeree
,
R.
,
Papaioannou
,
A.
,
Adachi
,
J. D.
, and
Papadimitropoulos
,
E.
,
2001
, “
Economic Implications of Hip Fracture: Health Service Use, Institutional Care and Cost in Canada
,”
Osteoporosis Int.
,
12
(
4
), pp.
271
278
.10.1007/s001980170116
4.
Pinilla
,
T. P.
,
Boardman
,
K. C.
,
Bouxsein
,
M. L.
,
Myers
,
E. R.
, and
Hayes
,
W. C.
,
1996
, “
Impact Direction From a Fall Influences the Failure Load of the Proximal Femur as Much as Age-Related Bone Loss
,”
Calcified Tissue Int.
,
58
(
4
), pp.
231
235
.10.1007/BF02508641
5.
Ford
,
C. M.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1996
. “
The Effect of Impact Direction on the Structural Capacity of the Proximal Femur During Falls
,”
J. Bone Miner. Res.
,
11
(
3
), pp.
377
383
.10.1002/jbmr.5650110311
6.
Courtney
,
A. C.
,
Wachtel
,
E. F.
,
Myers
,
E. R.
, and
Hayes
,
W. C.
,
1994
. “
Effects of Loading Rate on Strength of the Proximal Femur
,”
Calcified Tissue Int.
,
55
(
1
), pp.
53
58
.10.1007/BF00310169
7.
Weber
,
T.
,
Yang
,
K.
,
Woo
,
R.
, and
Fitzgerald
,
R. J.
,
1992
. “
Proximal Femur Strength: Correlation of the Rate of Loading and Bone Mineral Density
,”
ASME Adv. Bioeng.
,
22
, pp.
111
114
. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027004005&partnerID=40&md5=44ce10be01e7fdc0ca20d30f6b51f6b8
8.
Lotz
,
J.
, and
Hayes
,
W.
,
1990
. “
The Use of Quantitative Computed Tomography to Estimate Risk of Fracture of the Hip From Falls
,”
J. Bone Joint Surgery Am.
,
72
(
5
), pp.
689
700
. Available at: http://jbjs.org/article.aspx?articleid=21302
9.
Lochmller
,
E. M.
,
Groll
,
O.
,
Kuhn
,
V.
, and
Eckstein
,
F.
,
2002
. “
Mechanical Strength of the Proximal Femur as Predicted From Geometric and Densitometric Bone Properties at the Lower Limb Versus the Distal Radius
,”
Bone
,
30
(
1
), pp.
207
216
.10.1016/S8756-3282(01)00621-4
10.
Manske
,
S. L.
,
Liu-Ambrose
,
T.
,
Cooper
,
D. M. L.
,
Kontulainen
,
S.
,
Guy
,
P.
,
Forster
,
B. B.
, and
McKay
,
H. A.
,
2008
, “
Cortical and Trabecular Bone in the Femoral Neck Both Contribute to Proximal Femur Failure Load Prediction
,”
Osteoporosis Int.
,
20
(
3
), pp.
445
453
.10.1007/s00198-008-0675-2
11.
Boehm
,
H.
,
Horng
,
A.
,
Notohamiprodjo
,
M.
,
Eckstein
,
F.
,
Burklein
,
D.
,
Panteleon
,
A.
,
Lutz
,
J.
, and
Reiser
,
M.
,
2008
, “
Prediction of the Fracture Load of Whole Proximal Femur Specimens by Topological Analysis of the Mineral Distribution in DXA-Scan Images
,”
Bone
,
43
(
5
), pp.
826
831
.10.1016/j.bone.2008.07.244
12.
de Bakker
,
P. M.
,
Manske
,
S. L.
,
Ebacher
,
V.
,
Oxland
,
T. R.
,
Cripton
,
P. A.
, and
Guy
,
P.
,
2009
, “
During Sideways Falls Proximal Femur Fractures Initiate in the Superolateral Cortex: Evidence From High-Speed Video of Simulated Fractures
,”
J. Biomech.
,
42
(
12
), pp.
1917
1925
.10.1016/j.jbiomech.2009.05.001
13.
Roberts
,
B. J.
,
Thrall
,
E.
,
Muller
,
J. A.
, and
Bouxsein
,
M. L.
,
2010
, “
Comparison of Hip Fracture Risk Prediction by Femoral aBMD to Experimentally Measured Factor of Risk
,”
Bone
,
46
(
3
), pp.
742
746
.10.1016/j.bone.2009.10.020
14.
Keyak
,
J. H.
,
2000
, “
Relationships Between Femoral Fracture Loads for Two Load Configurations
,”
J. Biomech.
,
33
(
4
), pp.
499
502
.10.1016/S0021-9290(99)00202-X
15.
Backman
,
S.
,
1957
, “
The proximal End of the Femur: Investigations With Special Reference to the Etiology of Femoral Neck Fractures; Anatomical Studies; Roentgen Projections; Theoretical Stress Calculations; Experimental Production of Fractures
,”
Acta Radiol. Suppl.
,
146
, pp.
1
166
.
16.
Feldman
,
F.
, and
Robinovitch
,
S. N.
,
2007
, “
Reducing Hip Fracture Risk During Sideways Falls: Evidence In Young Adults Of The Protective Effects Of Impact To The Hands And Stepping
,”
J. Biomech.
,
40
(
12
), pp.
2612
2618
.10.1016/j.jbiomech.2007.01.019
17.
Nachreiner
,
N. M.
,
Findorff
,
M. J.
,
Wyman
,
J. F.
, and
McCarthy
,
T. C.
,
2007
, “
Circumstances and Consequences Of Falls In Community-Dwelling Older Women
,”
J. Women's Health
,
16
(
10
), pp.
1437
1446
.10.1089/jwh.2006.0245
18.
McElhaney
,
J. H.
,
1966
. “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), p.
1231
1236
. Available at: http://jap.physiology.org/content/21/4/1231.short
19.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
,
1974
, “
The Response of Compact Bone In Tension At Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
(
2
), p.
217
225
.10.1007/BF02368492
20.
Saha
,
S.
, and
Hayes
,
W. C.
,
1974
, “
Instrumented Tensile-Impact Tests Of Bone
,”
Exp. Mech.
,
14
(
12
),
p
.
473
478
.10.1007/BF02323147
21.
Currey
,
J.
,
1975
, “
The Effects Of Strain Rate, Reconstruction And Mineral Content On Some Mechanical Properties Of Bovine Bone
,”
J. Biomech.
,
8
(
1
), pp.
81
86
.10.1016/0021-9290(75)90046-9
22.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Bone Compressive Strength: The Influence Of Density And Strain Rate
,”
Science
,
194
(
4270
), pp.
1174
1176
.10.1126/science.996549
23.
Robertson
,
D. M.
, and
Smith
,
D. C.
,
1978
, “
Compressive Strength Of Mandibular Bone As A Function Of Microstructure And Strain Rate
,”
J. Biomech.
,
11
(
1012
), pp.
455
471
.10.1016/0021-9290(78)90057-X
24.
Linde
,
F.
,
Nrgaard
,
P.
,
Hvid
,
I.
,
Odgaard
,
A.
, and
Sballe
,
K.
,
1991
, “
Mechanical Properties of Trabecular Bone. Dependency On Strain Rate
,”
J. Biomech.
,
24
(
9
), pp.
803
809
.10.1016/0021-9290(91)90305-7
25.
Pithioux
,
M.
,
Subit
,
D.
, and
Chabrand
,
P.
,
2004
, “
Comparison of Compact Bone Failure Under Two Different Loading Rates: Experimental And Modelling Approaches
,”
Med. Eng. Phys.
,
26
(
8
), pp.
647
653
.10.1016/j.medengphy.2004.05.002
26.
Hansen
,
U.
,
Zioupos
,
P.
,
Simpson
,
R.
,
Currey
,
J. D.
, and
Hynd
,
D.
,
2008
, “
The Effect of Strain Rate On The Mechanical Properties Of Human Cortical Bone
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011011
.10.1115/1.2838032
27.
Zioupos
,
P.
,
Hansen
,
U.
, and
Currey
,
J. D.
,
2008
, “
Microcracking Damage And The Fracture Process In Relation To Strain Rate In Human Cortical Bone Tensile Failure
,”
J. Biomech.
,
41
(
14
), pp.
2932
2939
.10.1016/j.jbiomech.2008.07.025
28.
Borissova
,
A.-M.
,
Rashkov
,
R.
,
Boyanov
,
M.
,
Shinkov
,
A.
,
Popivanov
,
P.
,
Temelkova
,
N.
,
Vlahov
,
J.
, and
Gavrailova
,
M.
,
2011
, “
Femoral Neck Bone Mineral Density And 10-Year Absolute Fracture Risk In A National Representative Sample of Bulgarian Women Aged 50 Years and Older
,”
Archives of Osteoporosis
,
6
(
1–2
), pp.
189
195
.10.1007/s11657-011-0064-x
29.
Cauley
,
J. A.
,
Lui
,
L.-Y.
,
Genant
,
H. K.
,
Salamone
,
L.
,
Browner
,
W.
,
Fink
,
H. A.
,
Cohen
,
P.
,
Hillier
,
T.
,
Bauer
,
D. C.
, and
Cummings
,
S. R.
,
2009
, “
Risk Factors For Severity And Type Of The Hip Fracture
,”
J. Bone Miner. Res.
,
24
(
5
), pp.
943
955
.10.1359/jbmr.081246
30.
Stone
,
K. L.
,
Seeley
,
D. G.
,
Lui
,
L.-Y.
,
Cauley
,
J. A.
,
Ensrud
,
K.
,
Browner
,
W. S.
,
Nevitt
,
M. C.
, and
Cummings
,
S. R.
,
2003
, “
BMD at Multiple Sites And Risk Of Fracture Of Multiple Types: Long-Term Results From The Study Of Osteoporotic Fractures
,”
J. Bone Miner. Res.
,
18
(
11
), pp.
1947
1954
.10.1359/jbmr.2003.18.11.1947
31.
Siris
,
E. S.
,
Chen
,
Y.-T.
,
Abbott
,
T. A.
,
Barrett-Connor
,
E.
,
Miller
,
P. D.
,
Wehren
,
L. E.
, and
Berger
,
M. L.
,
2004
, “
Bone Mineral Density Thresholds For Pharmacological Intervention To Prevent Fractures
,”
Arch. Int. Med.
,
164
(
10
), pp.
1108
1112
.10.1001/archinte.164.10.1108
32.
Greenspan
,
S. L.
,
Myers
,
E. R.
,
Maitland
,
L. A.
,
Resnick
,
N. M.
, and
Hayes
,
W. C.
,
1994
, “
Fall Severity And Bone Mineral Density As Risk Factors For Hip Fracture In Ambulatory Elderly
,”
JAMA
,
271
(
2
), pp.
128
133
.10.1001/jama.1994.03510260060029
33.
Singh
,
M.
,
Nagrath
,
A. R.
, and
Maini
,
P. S.
,
1970
, “
Changes in Trabecular Pattern Of The Upper End Of The Femur As An Index Of Osteoporosis
,”
J. Bone and Joint Surg. Am.
,
52
(
3
), pp.
457
467
. Available at: http://jbjs.org/article.aspx?articleid=15347
34.
Naylor
,
K. E.
,
McCloskey
,
E. V.
,
Eastell
,
R.
, and
Yang
,
L.
,
2012
, “
The Use of DXA Based Finite Element Analysis of the Proximal Femur in a Longitudinal Study of Hip Fracture
,”
J. Bone Miner. Res.
,
28
(
5
), pp.
1014
1021
.10.1002/jbmr.1856
35.
Bouxsein
,
M. L.
,
2003
, “
Bone Quality: Where Do We Go From Here?
Osteoporosis Int.
,
14
(
5S
), pp.
118
127
.10.1007/s00198-003-1489-x
36.
Robinovitch
,
S. N.
,
Evans
,
S. L.
,
Minns
,
J.
,
Laing
,
A. C.
,
Kannus
,
P.
,
Cripton
,
P. A.
,
Derler
,
S.
,
Birge
,
S. J.
,
Plant
,
D.
,
Cameron
,
I. D.
,
Kiel
,
D. P.
,
Howland
,
J.
,
Khan
,
K.
, and
Lauritzen
,
J. B.
,
2009
, “
Hip Protectors: Recommendations For Biomechanical Testingan International Consensus Statement (Part I)
,”
Osteoporosis Int.
,
20
(
12
), pp.
1977
1988
.10.1007/s00198-009-1045-4
37.
Laing
,
A. C.
, and
Robinovitch
,
S. N.
,
2008
, “
The Force Attenuation Provided By Hip Protectors Depends On Impact Velocity, Pelvic Size, And Soft Tissue Stiffness
,”
ASME J. Biomech. Eng.
,
130
(
6
), pp.
061005
9
.10.1115/1.2979867
38.
Laing
,
A. C.
,
Tootoonchi
,
I.
,
Hulme
,
P. A.
, and
Robinovitch
,
S. N.
,
2006
, “
Effect of Compliant Flooring On Impact Force During Falls on the Hip
,”
J. Orthop. Res.
,
24
(
7
), pp.
1405
1411
.10.1002/jor.20172
39.
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Martelli
,
S.
,
Taddei
,
F.
, and
Viceconti
,
M.
,
2007
, “
in vitro Replication of Spontaneous Fractures Of The Proximal Human Femur
,”
J. Biomech.
,
40
(
13
), pp.
2837
2845
.10.1016/j.jbiomech.2007.03.015
40.
Verhulp
,
E.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2006
, “
Comparison of Micro-Level and Continuum-Level Voxel Models of the Proximal Femur
,”
J. Biomech.
,
39
(
16
), pp.
2951
2957
.10.1016/j.jbiomech.2005.10.027
41.
Cristofolini
,
L.
,
McNamara
,
B. P.
,
Freddi
,
A.
, and
Viceconti
,
M.
,
1997
, “
in vitro Measured Strains In The Loaded Femur: Quantification Of Experimental Error
,”
J. Strain Anal. Eng. Design
,
32
(
3
), pp.
193
200
.10.1243/0309324971513337
42.
Orwoll
,
E. S.
,
Marshall
,
L. M.
,
Nielson
,
C. M.
,
Cummings
,
S. R.
,
Lapidus
,
J.
,
Cauley
,
J. A.
,
Ensrud
,
K.
,
Lane
,
N.
,
Hoffmann
,
P. R.
,
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
2009
, “
Finite Element Analysis Of The Proximal Femur And Hip Fracture Risk In Older Men
,”
J. Bone Miner. Res.
,
24
(
3
), pp.
475
483
.10.1359/jbmr.081201
43.
Parker
,
E. D.
,
Pereira
,
M. A.
,
Virnig
,
B.
, and
Folsom
,
A. R.
,
2008
, “
The Association of Hip Circumference With Incident Hip Fracture In A Cohort Of Postmenopausal Women: The Iowa Women's Health Study
,”
Ann. Epidemiology
,
18
(
11
), pp.
836
841
.10.1016/j.annepidem.2008.07.007
44.
Nguyen
,
N. D.
,
Pongchaiyakul
,
C.
,
Center
,
J. R.
,
Eisman
,
J. A.
, and
Nguyen
,
T. V.
,
2005
, “
Abdominal Fat And Hip Fracture Risk In The Elderly: The Dubbo Osteoporosis Epidemiology Study
,”
BMC Musculoskeletal Disorders
,
6
(
1
), p.
11
.10.1186/1471-2474-6-11
45.
Nguyen
,
N. D.
,
Pongchaiyakul
,
C.
,
Center
,
J. R.
,
Eisman
,
J. A.
, and
Nguyen
,
T. V.
,
2005
, “
Identification of High-Risk Individuals For Hip Fracture: A 14 Year Prospective Study
,”
J. Bone Miner. Res.
,
20
(
11
), pp.
1921
1928
.10.1359/JBMR.050520
46.
Minns
,
R. J.
,
Marsh
,
A.-M.
,
Chuck
,
A.
, and
Todd
,
J.
,
2007
, “
Are Hip Protectors Correctly Positioned In Use?
Age and Aging
,
36
(
2
), pp.
140
144
.10.1093/ageing/afl186
47.
Nielson
,
C. M.
,
Marshall
,
L. M.
,
Adams
,
A. L.
,
LeBlanc
,
E. S.
,
Cawthon
,
P. M.
,
Ensrud
,
K.
,
Stefanick
,
M. L.
,
Barrett-Connor
,
E.
, and
Orwoll
,
E. S.
,
2011
, “
BMI and Fracture Risk In Older Men: The Osteoporotic Fractures In Men Study (MrOS)
,”
J. Bone and Mineral Res.
,
26
(
3
), pp.
496
502
.10.1002/jbmr.235
48.
van den Kroonenberg
,
A. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1995
, “
Dynamic Models for Sideways Falls From Standing Height
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
309
318
.10.1115/1.2794186
49.
Robinovitch
,
S. N.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1991
, “
Prediction of Femoral Impact Forces In Falls On The Hip
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
366
374
.10.1115/1.2895414
50.
Laing
,
A. C.
, and
Robinovitch
,
S. N.
,
2010
, “
Characterizing the Effective Stiffness Of The Pelvis During Sideways Falls On The Hip
,”
J. Biomech.
43
(
10
), pp.
1898
1904
.10.1016/j.jbiomech.2010.03.025
51.
Robinovitch
,
S. N.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1997
, “
Distribution of Contact Force During Impact To The Hip
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
499
508
.10.1007/BF02684190
52.
Armstrong
,
M.
,
Spencer
,
E. A.
,
Cairns
,
B. J.
,
Banks
,
E.
,
Pirie
,
K.
,
Green
,
J.
,
Wright
,
F. L.
,
Reeves
,
G. K.
,
Beral
,
V.
,
2011
, “
Body Mass Index And Physical Activity In Relation To The Incidence Of Hip Fracture In Postmenopausal Women
,”
J. Bone Miner. Res.
,
26
(
6
), pp.
1330
1338
.10.1002/jbmr.315
53.
Bouxsein
,
M. L.
,
Szulc
,
P.
,
Munoz
,
F.
,
Thrall
,
E.
,
Sornay-Rendu
,
E.
, and
Delmas
,
P. D.
,
2007
, “
Contribution of Trochanteric Soft Tissues To Fall Force Estimates, The Factor Of Risk, And Prediction Of Hip Fracture Risk
,”
J. Bone Miner. Res.
,
22
(
6
), pp.
825
831
.10.1359/jbmr.070309
54.
Nielson
,
C. M.
,
Bouxsein
,
M. L.
,
Freitas
,
S. S.
,
Ensrud
,
K. E.
,
Orwoll
,
E. S.
, and for the
Osteoporotic Fractures in Men (MrOS) Research Group
,
2009
, “
Trochanteric Soft Tissue Thickness And Hip Fracture In Older Men
,”
J. Clin. Endocrin. Metabol.
,
94
(
2
), pp.
491
496
.10.1210/jc.2008-1640
55.
Beason
,
D. P.
,
Dakin
,
G. J.
,
Lopez
,
R. R.
,
Alonso
,
J. E.
,
Bandak
,
F. A.
, and
Eberhardt
,
A. W.
,
2003
, “
Bone Mineral Density Correlates With Fracture Load In Experimental Side Impacts Of The Pelvis
,”
J. Biomech.
,
36
(
2
), pp.
219
27
.10.1016/S0021-9290(02)00330-5
56.
Nightingale
,
R. W.
,
McElhaney
,
J. H.
,
Camacho
,
D. L.
,
Kleinberger
,
M.
,
Winkelstein
,
B. A.
, and
Myers
,
B. S.
,
1997
, “
The Dynamic Responses Of The Cervical Spine: Buckling, End Conditions, And Tolerance In Compressive Impacts
,”
SAE Conference Proceedings P
, Stapp Car Crash Conference, pp.
451
472
.
57.
Saari
,
A.
,
Itshayek
,
E.
, and
Cripton
,
P. A.
,
2011
, “
Cervical Spinal Cord Deformation During Simulated Head-First Impact Injuries
,”
J. Biomech.
,
44
(
14
), pp.
2565
2571
.10.1016/j.jbiomech.2011.06.015
58.
van den Kroonenberg
,
A. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1996
, “
Hip Impact Velocities And Body Configurations For Voluntary Falls From Standing Height
,”
J. Biomech.
,
29
(
6
), pp.
807
811
.10.1016/0021-9290(95)00134-4
59.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
,
2008
, “
Effects of Trochanteric Soft Tissue Thickness And Hip Impact Velocity On Hip Fracture In Sideways Fall Through 3D Finite Element Simulations
,”
J. Biomech.
,
41
(
13
), pp.
2834
2842
.10.1016/j.jbiomech.2008.07.001
60.
Robinovitch
,
S. N.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1995
, “
Force Attenuation in Trochanteric Soft Tissues During Impact From A Fall
,”
J. Orthop. Res.
,
13
(
6
), pp.
956
962
.10.1002/jor.1100130621
61.
Viceconti
,
M.
,
Toni
,
A.
, and
A.
,
G.
,
1992
,
Experimental Mechanics: Technology Transfer Between High Tech Engineering and Biomechanics (Clinical Aspects of Biomedicine)
, F. G. Little, ed.,
Elsevier Science
,
Amsterdam
.
62.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic And Yield Properties Of Human Femoral Trabecular And Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.10.1016/S0021-9290(03)00257-4
63.
Toogood
,
P. A.
,
Skalak
,
A.
, and
Cooperman
,
D. R.
,
2009
, “
Proximal Femoral Anatomy In The Normal Human Population
,”
Clin. Orthop. Relat. Res.
,
467
(
4
), pp.
876
885
.10.1007/s11999-008-0473-3
64.
Yasuyuki
,
M.
,
Masakazu
,
U.
,
Mitsugu
,
T.
,
Yasuyuki
,
M.
,
Kazuo
,
A.
, and
Kiyoshi
,
K.
,
2009
, “
Relationship Between The Load-Displacement Curve And Deformation Distribution In Porcine Mandibular Periodontium
,”
J. Biomech. Sci. Eng.
,
4
(
3
), pp.
336
344
.10.1299/jbse.4.336
65.
Sztefek
,
P.
,
Vanleene
,
M.
,
Olsson
,
R.
,
Collinson
,
R.
,
Pitsillides
,
A. A.
, and
Shefelbine
,
S.
,
2010
, “
Using Digital Image Correlation To Determine Bone Surface Strains During Loading And After Adaptation Of The Mouse Tibia
,”
J. Biomech.
,
43
(
4
), pp.
599
605
.10.1016/j.jbiomech.2009.10.042
66.
Dickinson
,
A. S.
,
Taylor
,
A. C.
,
Ozturk
,
H.
, and
Browne
,
M.
,
2011
, “
Experimental Validation Of A Finite Element Model Of The Proximal Femur Using Digital Image Correlation And A Composite Bone Model
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
014504
.10.1115/1.4003129
67.
Gray
,
H.
, and
Harmon Lewis
,
W.
,
1918
,
Anatomy of the Human Body
,
20th ed.
,
Lea & Febiger
,
Philadelphia
.
You do not currently have access to this content.