Impact testing of pedestrian headforms is usually conducted at one velocity and with one mass of headform, but real impacts occur at a range of velocities and masses. A method is proposed to predict the Head Injury Criterion (HIC) and similar quantities at other velocities from their values observed under test conditions. A specific assumption is made about acceleration during the impact as related to displacement, its differential (instantaneous velocity), mass of headform, and initial velocity: namely, that it is the product of a power function of displacement (representing a possibly nonlinear spring) and a term that includes a type of damping. This equation is not solved, but some properties of the solution are obtained: HIC, maximum acceleration, and maximum displacement are found to be power functions of mass of headform and initial velocity. Expressions for the exponents are obtained in terms of the nonlinearity parameter of the spring. Simple formulae are obtained for the dependence of HIC, maximum acceleration, and maximum displacement on velocity and mass. These are relevant to many types of impact.

References

References
1.
Hutchinson
,
T. P.
,
Searson
,
D. J.
,
Anderson
,
R. W. G.
,
Dutschke
,
J. K.
,
Ponte
,
G.
, and
van den Berg
,
A. L.
,
2011
, “
Protection of the Unhelmeted Head Against Blunt Impact: The Pedestrian and the Car Bonnet
,”
Proceedings of the Australasian Road Safety Research, Policing and Education Conference
.
3.
Euro NCAP
,
2013
, “
Protocols—Pedestrian Protection
,” Available at: http://www.euroncap.com/Content-Web-Page/fb5e236e-b11b-4598-8e20-3eced15e74e/protocols.aspx
4.
Hutchinson
,
T. P.
,
Anderson
,
R. W. G.
, and
Searson
,
D. J.
,
2012
, “
Pedestrian Headform Testing: Inferring Performance at Impact Speeds and for Headform Masses not Tested, and Estimating Average Performance in a Range of Real-World Conditions
,”
Traffic Inj. Prev.
,
13
(
4
), pp.
402
411
.10.1080/15389588.2012.660252
5.
Chou
,
C. C.
, and
Nyquist
,
G. W.
,
1974
, “
Analytical Studies of the Head Injury Criterion (HIC)
,” SAE Technical Paper No. 740082.
6.
Searson
,
D. J.
,
Anderson
,
R. W. G.
,
Ponte
,
G.
, and
van den Berg
,
A. L.
,
2009
, “
Headform Impact Test Performance of Vehicles Under the GTR on Pedestrian Safety
,” Report No. 072, Centre for Automotive Safety Research, University of Adelaide, Adelaide, Australia.
7.
Deb
,
A.
, and
Ali
,
T.
,
2004
, “
A Lumped Parameter-Based Approach for Simulation of Automotive Headform Impact With Countermeasures
,”
Int. J. Impact Eng.
,
30
(
5
), pp.
521
539
.10.1016/S0734-743X(03)00094-0
8.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
9.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedbœuf
,
J.-C.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.10.1023/B:MUBO.0000029392.21648.bc
10.
Ommaya
,
A. K.
,
Thibault
,
L.
, and
Bandak
,
F. A.
,
1994
, “
Mechanisms of Impact Head Injury
,”
Int. J. Impact Eng.
,
15
(
4
), pp.
535
560
.10.1016/0734-743X(94)80033-6
11.
Anderson
,
R. W.
,
Long
,
A. D.
, and
Serre
,
T.
,
2009
, “
Phenomenological Continuous Contact-Impact Modelling for Multibody Simulations of Pedestrian-Vehicle Contact Interactions Based on Experimental Data
,”
Nonlinear Dyn.
,
58
(
1–2
), pp.
199
208
.10.1007/s11071-009-9471-6
12.
Marhefka
,
D. W.
, and
Orin
,
D. E.
,
1999
, “
A Compliant Contact Model With Nonlinear Damping for Simulation of Robotic Systems
,”
IEEE Trans. Syst., Man, Cybernet. Part A. Syst. Humans
,
29
(
6
), pp.
566
572
.10.1109/3468.798060
13.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
(
1
), pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
14.
Hanley
,
K.
,
Collins
,
F.
,
Cronin
,
K.
,
Byrne
,
E.
,
Moran
,
K.
, and
Brabazon
,
D.
,
2012
, “
Simulation of the Impact Response of a Sliotar Core With Linear and Non-Linear Contact Models
,”
Int. J. Impact Eng.
,
50
(
1
), pp.
113
122
.10.1016/j.ijimpeng.2012.06.006
15.
Yigit
,
A. S.
,
Christoforou
,
A. P.
, and
Majeed
,
M. A.
,
2011
, “
A Nonlinear Visco-Elastoplastic Impact Model and the Coefficient of Restitution
,”
Nonlinear Dyn.
,
66
(
4
), pp.
509
521
.10.1007/s11071-010-9929-6
16.
Searson
,
D. J.
,
Anderson
,
R. W. G.
, and
Hutchinson
,
T. P.
,
2012
, “
Use of a Damped Hertz Contact Model to Represent Head Impact Safety Tests
,”
Proceedings of the 7th Australasian Congress on Applied Mechanics
,
A.
Kolousov
et al., eds.,
Engineers Australia (National Committee on Applied Mechanics)
,
Barton, ACT
, pp.
230
239
.
17.
Searson
,
D. J.
,
Anderson
,
R. W. G.
, and
Hutchinson
,
T. P.
,
2012
, “
The Effect of Impact Speed on the HIC Obtained in Pedestrian Headform Tests
,”
Int. J. Crashworthiness
,
17
(
5
), pp.
562
570
.10.1080/13588265.2012.699271
18.
Mizuno
,
K.
,
Yonezawa
,
H.
, and
Kajzer
,
J.
,
2001
, “
Pedestrian Headform Impact Tests for Various Vehicle Locations
,”
Proceedings of the 17th Enhanced Safety of Vehicles Conference
.
You do not currently have access to this content.