In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the “nonorthogonal projections” presented in a recent paper by Desroches et al. (2010, “Expression of Joint Moment in the Joint Coordinate System,” ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144) and Fujie et al. (1996, “Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control,” Journal of Biomechanics, 29(12), pp. 1577–1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses.

References

References
1.
Desroches
,
G.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2010
, “
Expression of Joint Moment in the Joint Coordinate System
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
114503
.10.1115/1.4002537
2.
Morrow
,
M. M. B.
,
Hurd
,
W. J.
,
Kaufman
,
K. R.
, and
An
,
K.-A.
,
2009
, “
Upper-Limb Joint Kinetics Expression During Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
46
(
7
), pp.
939
944
.10.1682/JRRD.2008.12.0165
3.
Schache
,
A. G.
, and
Baker
,
R.
,
2007
, “
On the Expression of Joint Moments During Gait
,”
Gait and Posture
,
25
(
3
), pp.
440
452
.10.1016/j.gaitpost.2006.05.018
4.
O'Reilly
,
O. M.
,
2007
, “
The Dual Euler Basis: Constraints, Potentials, and Lagrange's Equations in Rigid-Body Dynamics
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
256
258
.10.1115/1.2190231
5.
O'Reilly
,
O. M.
,
2008
,
Intermediate Dynamics for Engineers: A Unified Treatment of Newton-Euler and Lagrangian Mechanics
,
Cambridge University Press
,
Cambridge, England
.
6.
O'Reilly
,
O. M.
,
Metzger
,
M. F.
,
Buckley
,
J. M.
,
Moody
,
D. A.
, and
Lotz
,
J. C.
,
2009
, “
On the Stiffness Matrix of the Intervertebral Joint: Application to Total Disk Replacement
,”
ASME J. Biomech.Eng.
,
131
(
8
), p.
081007
.10.1115/1.3148195
7.
Howard
,
S.
,
Žefran
,
M.
, and
Kumar
,
V.
,
1998
, “
On the 6 × 6 Cartesian Stiffness Matrix for Three-Dimensional Motions
,”
Mech. Mach. Theory
,
33
(
4
), pp.
389
408
.10.1016/S0094-114X(97)00040-2
8.
Žefran
,
M.
, and
Kumar
,
V.
,
2002
, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
30
38
.10.1115/1.1423638
9.
Simmonds
,
J. G.
,
1994
,
A Brief on Tensor Analysis
,
second ed.
,
Springer-Verlag
,
New York
.
10.
Christophy
,
M.
,
Curtin
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2013
, “
On the Modeling of the Intervertebral Joint in Multibody Models for the Spine
,”
Multibody Syst. Dyn.
(in press).10.1007/s11044-012-9331-x
11.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
12.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.-Y.
,
1996
, “
Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.
You do not currently have access to this content.