Application of low-magnitude strains to cells on small-thickness scaffolds, such as those for rodent calvarial defect models, is problematic, because general translation systems have limitations in terms of generating low-magnitude smooth signals. To overcome this limitation, we developed a cyclic strain generator using a customized, flexure-based, translational nanoactuator that enabled generation of low-magnitude smooth strains at the subnano- to micrometer scale to cells on small-thickness scaffolds. The cyclic strain generator we developed showed predictable operational characteristics by generating a sinusoidal signal of a few micrometers (4.5 μm) without any distortion. Three-dimensional scaffolds fitting the critical-size rat calvarial defect model were fabricated using poly(caprolactone), poly(lactic-co-glycolic acid), and tricalcium phosphate. Stimulation of human adipose–derived stem cells (ASCs) on these fabricated scaffolds using the cyclic strain generator we developed resulted in upregulated osteogenic marker expression compared to the nonstimulated group. These preliminary in vitro results suggest that the cyclic strain generator successfully provided mechanical stimulation to cells on small-thickness scaffolds, which influenced the osteogenic differentiation of ASCs.

References

References
1.
Lacroix
,
D.
,
Prendergast
,
P. J.
,
Li
,
G.
, and
Marsh
,
D.
,
2002
, “
Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing
,”
Med. Biol. Eng. Comput.
,
40
(
1
), pp.
14
21
.10.1007/BF02347690
2.
Lyall
,
F.
, and
El Haj
,
A.
,
1994
,
Biomechanics and Cells
,
Cambridge University
,
Cambridge, England
.
3.
Jones
,
D. B.
,
Nolte
,
H.
,
Scholubbers
,
J. G.
,
Turner
,
E.
, and
Veltel
,
D.
,
1991
, “
Biochemical Signal Transduction of Mechanical Strain in Osteoblast-like Cells
,”
Biomaterials
,
12
(
2
), pp.
101
110
.10.1016/0142-9612(91)90186-E
4.
Qi
,
M. C.
,
Hu
,
J.
,
Zou
,
S. J.
,
Chen
,
H. Q.
,
Zhou
,
H. X.
, and
Han
,
L. C.
,
2008
, “
Mechanical Strain Induces Osteogenic Differentiation: Cbfa1 and Ets-1 Expression in Stretched Rat Mesenchymal Stem Cells
,”
Int. J. Oral Maxillofac. Surg.
,
37
(
5
), pp.
453
458
.10.1016/j.ijom.2007.12.008
5.
Jagodzinski
,
M.
,
Breitbart
,
A.
,
Wehmeier
,
M.
,
Hesse
,
E.
,
Haasper
,
C.
,
Krettek
,
C.
,
Zeichen
,
J.
, and
Hankemeier
,
S.
,
2008
, “
Influence of Perfusion and Cyclic Compression on Proliferation and Differentiation of Bone Marrow Stromal Cells in 3-Dimensional Culture
,”
J. Biomech.
,
41
(
9
), pp.
1885
1891
.10.1016/j.jbiomech.2008.04.001
6.
Steinmetz
,
N. J.
, and
Bryant
,
S. J.
,
2011
, “
The Effects of Intermittent Dynamic Loading on Chondrogenic and Osteogenic Differentiation of Human Marrow Stromal Cells Encapsulated in RGD-Modified Poly(Ethylene Glycol) Hydrogels
,”
Acta Biomater.
,
7
(
11
), pp.
3829
3840
.10.1016/j.actbio.2011.06.031
7.
Michalopoulos
,
E.
,
Knight
,
R. L.
,
Korossis
,
S.
,
Kearney
,
J. N.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2012
, “
Development of Methods for Studying the Differentiation of Human Mesenchymal Stem Cells Under Cyclic Compressive Strain
,”
Tissue Eng., Part C: Methods
,
18
(
4
), pp.
252
262
.10.1089/ten.tec.2011.0347
8.
Park
,
S. H.
,
Sim
,
W. Y.
,
Min
,
B. H.
,
Yang
,
S. S.
,
Khademhosseini
,
A.
, and
Kaplan
,
D. L.
,
2012
, “
Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells Under Mechanical Stimulation
,”
PLoS One
,
7
(
9
), p.
e46689
.10.1371/journal.pone.0046689
9.
Inman
,
V. T.
,
1966
, “
Human Locomotion
,”
Can. Med. Assoc. J.
,
94
(
20
), pp.
1047
1054
.
10.
Mundy
,
G. R.
,
2002
, “
Metastasis to Bone: Causes, Consequences and Therapeutic Opportunities
,”
Nat. Rev. Cancer
,
2
(
8
), pp.
584
593
.10.1038/nrc867
11.
Wood
,
M. A.
,
Yang
,
Y.
,
Baas
,
E.
,
Meredith
,
D. O.
,
Richards
,
R. G.
,
Kuiper
,
J. H.
, and
El Haj
,
A. J.
,
2008
, “
Correlating Cell Morphology and Osteoid Mineralization Relative to Strain Profile for Bone Tissue Engineering Applications
,”
J. R. Soc., Interface
,
5
(
25
), pp.
899
907
.10.1098/rsif.2007.1265
12.
Ignatius
,
A.
,
Blessing
,
H.
,
Liedert
,
A.
,
Schmidt
,
C.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Friemert
,
B.
, and
Claes
,
L.
,
2005
, “
Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type I Collagen Matrices
,”
Biomaterials
,
26
(
3
), pp.
311
318
.10.1016/j.biomaterials.2004.02.045
13.
Schummer
,
J.
,
2004
,
Discovering the Nanoscale
,
Ios
, Amsterdam, Netherlands.
14.
Ouyang
,
P.
,
Tjiptoprodjo
,
R.
,
Zhang
,
W.
, and
Yang
,
G.
,
2008
, “
Micro-motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
,
38
(
5
), pp.
463
478
.10.1007/s00170-007-1109-6
15.
Chen
,
H.
,
Ng
,
W.
, and
Engelstad
,
R.
,
1992
, “
Finite Element Analysis of a Scanning X-Ray Microscope Micropositioning Stage
,”
Rev. Sci. Instrum.
,
63
(
1
), pp.
591
594
.10.1063/1.1142713
16.
Sugihara
,
K.
,
Mori
,
I.
,
Tojo
,
T.
,
Ito
,
C.
,
Tabata
,
M.
, and
Shinozaki
,
T.
,
1989
, “
Piezoelectrically Driven XYθ Table for Submicron Lithography Systems
,”
Rev. Sci. Instrum.
,
60
(
9
), pp.
3024
3029
.10.1063/1.1140598
17.
Paros
,
J.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
18.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Complaint Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
19.
Mohd Zubir
,
M. N.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
.10.1016/j.precisioneng.2008.10.003
20.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D. J.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B. J.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.10.1109/JMEMS.2006.885853
21.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
,
2007
, “
Design, Analysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
946
961
.10.1016/j.ijmachtools.2006.07.007
22.
Lee
,
C. W.
, and
Kim
,
S. W.
,
1997
, “
An Ultraprecision Stage for Alignment of Wafers in Advanced Microlithography
,”
Precis. Eng.
,
21
(
2
), pp.
113
122
.10.1016/S0141-6359(97)00080-9
23.
Shigley
,
J. E.
, and
Uicker
,
J. J. J.
,
1995
,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
24.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
25.
Mottard
,
P.
, and
St-Amant
,
Y.
,
2009
, “
Analysis of Flexural Hinge Orientation for Amplified Piezo-Driven Actuators
,”
Smart Mater. Struct.
,
18
(
3
), p.
035005
.10.1088/0964-1726/18/3/035005
26.
Tapp
,
H.
,
Hanley
,
E. N.
,
Patt
,
J. C.
, and
Gruber
,
H. E.
,
2009
, “
Adipose-Derived Stem Cells: Characterization and Current Application in Orthopaedic Tissue Repair
,”
Exp. Biol. Med.
,
234
(
1
), pp.
1
9
.10.3181/0805-MR-170
27.
Heng
,
B. C.
,
Cao
,
T.
,
Stanton
,
L. W.
,
Robson
,
P.
, and
Olsen
,
B.
,
2004
, “
Strategies for Directing the Differentiation of Stem Cells Into the Osteogenic Lineage In Vitro
,”
J. Bone Miner. Res.
,
19
(
9
), pp.
1379
1394
.10.1359/JBMR.040714
28.
Guilak
,
F.
,
Cohen
,
D. M.
,
Estes
,
B. T.
,
Gimble
,
J. M.
,
Liedtke
,
W.
, and
Chen
,
C. S.
,
2009
, “
Control of Stem Cell Fate by Physical Interactions With the Extracellular Matrix
,”
Cell Stem Cell
,
5
(
1
), pp.
17
26
.10.1016/j.stem.2009.06.016
29.
Hong
,
J. M.
,
Kim
,
B. J.
,
Shim
,
J. H.
,
Kang
,
K. S.
,
Kim
,
K. J.
,
Rhie
,
J. W.
,
Cha
,
H. J.
, and
Cho
,
D. W.
,
2012
, “
Enhancement of Bone Regeneration Through Facile Surface Functionalization of Solid Freeform Fabrication-Based Three-Dimensional Scaffolds Using Mussel Adhesive Proteins
,”
Acta Biomater.
,
8
(
7
), pp.
2578
2586
.10.1016/j.actbio.2012.03.041
30.
Kim
,
J. Y.
,
Jin
,
G. Z.
,
Park
,
I. S.
,
Kim
,
J. N.
,
Chun
,
S. Y.
,
Park
,
E. K.
,
Kim
,
S. Y.
,
Yoo
,
J.
,
Kim
,
S. H.
,
Rhie
,
J. W.
, and
Cho
,
D. W.
,
2010
, “
Evaluation of Solid Free-Form Fabrication-Based Scaffolds Seeded With Osteoblasts and Human Umbilical Vein Endothelial Cells for Use In Vivo Osteogenesis
,”
Tissue Eng., Part A
,
16
(
7
), pp.
2229
2236
.10.1089/ten.tea.2009.0644
31.
Ekaterina
,
K.
,
Kim
,
Y.
,
Kim
,
J. Y.
,
Kim
,
M. R.
,
Kim
,
S. O.
, and
Kim
,
S. J.
,
2012
, “
Histomorphometric Study on Healing of Critical Sized Defect in Rat Calvaria Using Three Different Bovine Grafts
,”
J. Tissue Eng. Regener. Med.
,
9
(
5
), pp.
276
281
.10.1007/s13770-012-0326-8
32.
Jung
,
J. W.
,
Kang
,
H. W.
,
Kang
,
T. Y.
,
Park
,
J. H.
,
Park
,
J.
, and
Cho
,
D. W.
,
2012
, “
Projection Image-Generation Algorithm for Fabrication of a Complex Structure Using Projection-Based Microstereolithography
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
445
449
.10.1007/s12541-012-0057-8
33.
Grossman
,
G. E.
,
Leigh
,
R. J.
,
Abel
,
L. A.
,
Lanska
,
D. J.
, and
Thurston
,
S. E.
,
1988
, “
Frequency and Velocity of Rotational Head Perturbations During Locomotion
,”
Exp. Brain Res.
,
70
(
3
), pp.
470
476
.10.1007/BF00247595
34.
Whang
,
K.
,
Healy
,
K. E.
,
Elenz
,
D. R.
,
Nam
,
E. K.
,
Tsai
,
D. C.
,
Thomas
,
C. H.
,
Nuber
,
G. W.
,
Glorieux
,
F. H.
,
Travers
,
R.
, and
Sprague
,
S. M.
,
1999
, “
Engineering Bone Regeneration With Bioabsorbable Scaffolds With Novel Microarchitecture
,”
Tissue Eng.
,
5
(
1
), pp.
35
51
.10.1089/ten.1999.5.35
35.
Brey
,
D. M.
,
Chung
,
C.
,
Hankenson
,
K. D.
,
Garino
,
J. P.
, and
Burdick
,
J. A.
,
2010
, “
Identification of Osteoconductive and Biodegradable Polymers From a Combinatorial Polymer Library
,”
J. Biomed. Mater. Res. Part A
,
93A
(
2
), pp.
807
816
.
36.
Park
,
S. Y.
,
Ki
,
C. S.
,
Park
,
Y. H.
,
Jung
,
H. M.
,
Woo
,
K. M.
, and
Kim
,
H. J.
,
2010
, “
Electrospun Silk Fibroin Scaffolds With Macropores for Bone Regeneration: An In Vitro and In Vivo Study
,”
Tissue Eng., Part A
,
16
(
4
), pp.
1271
1279
.10.1089/ten.tea.2009.0328
37.
Yoon
,
E.
,
Dhar
,
S.
,
Chun
,
D. E.
,
Gharibjanian
,
N. A.
, and
Evans
,
G. R. D.
,
2007
, “
In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-co-Glycolic Acid Constructs for Bone Regeneration in a Rat Critical-Sized Calvarial Defect Model
,”
Tissue Eng.
,
13
(
3
), pp.
619
627
.10.1089/ten.2006.0102
38.
Suzuki
,
T.
,
Hukkanen
,
M.
,
Ohashi
,
R.
,
Yokogawa
,
Y.
,
Nishizawa
,
K.
,
Nagata
,
F.
,
Buttery
,
L.
, and
Polak
,
J.
,
2000
, “
Growth and Adhesion of Osteoblast-Like Cells Derived From Neonatal Rat Calvaria on Calcium Phosphate Ceramics
,”
J. Biosci. Bioeng.
,
89
(
1
), pp.
18
26
.10.1016/S1389-1723(00)88045-7
39.
Manjubala
,
I.
,
Sastry
,
T. P.
, and
Kumar
,
R. V. S.
,
2005
, “
Bone In-Growth Induced by Biphasic Calcium Phosphate Ceramic in Femoral Defect of Dogs
,”
J. Biomater. Appl.
,
19
(
4
), pp.
341
360
.10.1177/0885328205048633
40.
Kim
,
J. Y.
,
Yoon
,
J. J.
,
Park
,
E. K.
,
Kim
,
D. S.
,
Kim
,
S. Y.
, and
Cho
,
D. W.
,
2009
, “
Cell Adhesion and Proliferation Evaluation of SFF-Based Biodegradable Scaffolds Fabricated Using a Multi-head Deposition System
,”
Biofabrication
,
1
(
1
), p.
015002
.10.1088/1758-5082/1/1/015002
41.
Seol
,
Y. J.
,
Kang
,
T. Y.
, and
Cho
,
D. W.
,
2012
, “
Solid Freeform Fabrication Technology Applied to Tissue Engineering With Various Biomaterials
,”
Soft Matter
,
8
(
6
), pp.
1730
1735
.10.1039/c1sm06863f
42.
Liu
,
F. H.
,
Shen
,
Y. K.
, and
Lee
,
J. L.
,
2012
, “
Selective Laser Sintering of a Hydroxyapatite-Silica Scaffold on Cultured MG63 Osteoblasts In Vitro
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
439
444
.10.1007/s12541-012-0056-9
43.
Citeau
,
A.
,
Guicheux
,
J.
,
Vinatier
,
C.
,
Layrolle
,
P.
,
Nguyen
,
T. P.
,
Pilet
,
P.
, and
Daculsi
,
G.
,
2005
, “
In Vitro Biological Effects of Titanium Rough Surface Obtained by Calcium Phosphate Grid Blasting
,”
Biomaterials
,
26
(
2
), pp.
157
165
.10.1016/j.biomaterials.2004.02.033
44.
Yeong
,
W. Y.
,
Chua
,
C. K.
,
Leong
,
K. F.
, and
Chandrasekaran
,
M.
,
2004
, “
Rapid Prototyping in Tissue Engineering: Challenges and Potential
,”
Trends Biotechnol.
,
22
(
12
), pp.
643
652
.10.1016/j.tibtech.2004.10.004
45.
Gough
,
J. E.
,
Notingher
,
I.
, and
Hench
,
L. L.
,
2004
, “
Osteoblast Attachment and Mineralized Nodule Formation on Rough and Smooth 45S5 Bioactive Glass Monoliths
,”
J. Biomed. Mater. Res. Part A
,
68
(
4
), pp.
640
650
.10.1002/jbm.a.20075
46.
Gimble
,
J. M.
,
Katz
,
A. J.
, and
Bunnell
,
B. A.
,
2007
, “
Adipose-Derived Stem Cells for Regenerative Medicine
,”
Circ. Res.
,
100
(
9
), pp.
1249
1260
.10.1161/01.RES.0000265074.83288.09
47.
Angle
,
S. R.
,
Sena
,
K.
,
Sumner
,
D. R.
, and
Virdi
,
A. S.
,
2011
, “
Osteogenic Differentiation of Rat Bone Marrow Stromal Cells by Various Intensities of Low-Intensity Pulsed Ultrasound
,”
Ultrasonics
,
51
(
3
), pp.
281
288
.10.1016/j.ultras.2010.09.004
48.
Cowan
,
C. M.
,
Shi
,
Y. Y.
,
Aalami
,
O. O.
,
Chou
,
Y. F.
,
Mari
,
C.
,
Thomas
,
R.
,
Quarto
,
N.
,
Contag
,
C. H.
,
Wu
,
B.
, and
Longaker
,
M. T.
,
2004
, “
Adipose-Derived Adult Stromal Cells Heal Critical-Size Mouse Calvarial Defects
,”
Nat. Biotechnol.
,
22
(
5
), pp.
560
567
.10.1038/nbt958
49.
Gregoire
,
F. M.
,
Smas
,
C. M.
, and
Sul
,
H. S.
,
1998
, “
Understanding Adipocyte Differentiation
,”
Physiol. Rev.
,
78
(
3
), pp.
783
809
.
50.
Gilbert
,
L.
,
He
,
X.
,
Farmer
,
P.
,
Rubin
,
J.
,
Drissi
,
H.
,
van Wijnen
,
A. J.
,
Lian
,
J. B.
,
Stein
,
G. S.
, and
Nanes
,
M. S.
,
2002
, “
Expression of the Osteoblast Differentiation Factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) Is Inhibited by Tumor Necrosis Factor-Alpha
,”
J. Biol. Chem.
,
277
(
4
), pp.
2695
2701
.10.1074/jbc.M106339200
51.
Franceschi
,
R. T.
, and
Xiao
,
G.
,
2003
, “
Regulation of the Osteoblast-Specific Transcription Factor, Runx2: Responsiveness to Multiple Signal Transduction Pathways
,”
J. Cell Biochem.
,
88
(
3
), pp.
446
454
.10.1002/jcb.10369
52.
Fujita
,
T.
,
Azuma
,
Y.
,
Fukuyama
,
R.
,
Hattori
,
Y.
,
Yoshida
,
C.
,
Koida
,
M.
,
Ogita
,
K.
, and
Komori
,
T.
,
2004
, “
Runx2 Induces Osteoblast and Chondrocyte Differentiation and Enhances Their Migration by Coupling With PI3K-Akt Signaling
,”
J. Cell Biol.
,
166
(
1
), pp.
85
95
.10.1083/jcb.200401138
53.
Tu
,
Q.
,
Zhang
,
J.
,
Paz
,
J.
,
Wade
,
K.
,
Yang
,
P.
, and
Chen
,
J.
,
2008
, “
Haploinsufficiency of Runx2 Results in Bone Formation Decrease and Different BSP Expression Pattern Changes in Two Transgenic Mouse Models
,”
J. Cell Physiol.
,
217
(
1
), pp.
40
47
.10.1002/jcp.21472
54.
Ducy
,
P.
,
Zhang
,
R.
,
Geoffroy
,
V.
,
Ridall
,
A. L.
, and
Karsenty
,
G.
,
1997
, “
Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation
,”
Cell
,
89
(
5
), pp.
747
754
.10.1016/S0092-8674(00)80257-3
55.
Zohar
,
R.
,
Cheifetz
,
S.
,
McCulloch
,
C. A.
, and
Sodek
,
J.
,
1998
, “
Analysis of Intracellular Osteopontin as a Marker of Osteoblastic Cell Differentiation and Mesenchymal Cell Migration
,”
Eur. J. Oral Sci.
,
106
(
Suppl 1
), pp.
401
407
.
56.
Tu
,
Q.
,
Valverde
,
P.
, and
Chen
,
J.
,
2006
, “
Osterix Enhances Proliferation and Osteogenic Potential of Bone Marrow Stromal Cells
,”
Biochem. Biophys. Res. Commun.
,
341
(
4
), pp.
1257
1265
.10.1016/j.bbrc.2006.01.092
57.
Luo
,
X. J.
,
Chen
,
J.
,
Song
,
W. X.
,
Tang
,
N.
,
Luo
,
J. Y.
,
Deng
,
Z. L.
,
Sharff
,
K. A.
,
He
,
G.
,
Bi
,
Y.
,
He
,
B. C.
,
Bennett
,
E.
,
Huang
,
J. Y.
,
Kang
,
Q.
,
Jiang
,
W.
,
Su
,
Y. X.
,
Zhu
,
G. H.
,
Yin
,
H.
,
He
,
Y.
,
Wang
,
Y.
,
Souris
,
J. S.
,
Chen
,
L.
,
Zuo
,
G. W.
,
Montag
,
A. G.
,
Reid
,
R. R.
,
Haydon
,
R. C.
,
Luu
,
H. H.
, and
He
,
T. C.
,
2008
, “
Osteogenic BMPs Promote Tumor Growth of Human Osteosarcomas That Harbor Differentiation Defects
,”
Lab. Invest.
,
88
(
12
), pp.
1264
1277
.10.1038/labinvest.2008.98
58.
Owen
,
T. A.
,
Aronow
,
M.
,
Shalhoub
,
V.
,
Barone
,
L. M.
,
Wilming
,
L.
,
Tassinari
,
M. S.
,
Kennedy
,
M. B.
,
Pockwinse
,
S.
,
Lian
,
J. B.
, and
Stein
,
G. S.
,
1990
, “
Progressive Development of the Rat Osteoblast Phenotype In Vitro: Reciprocal Relationships in Expression of Genes Associated With Osteoblast Proliferation and Differentiation During Formation of the Bone Extracellular Matrix
,”
J. Cell Physiol.
,
143
(
3
), pp.
420
430
.10.1002/jcp.1041430304
You do not currently have access to this content.