Irreversible electroporation (IRE) is a new technology for ablating aberrant tissue that utilizes pulsed electric fields (PEFs) to kill cells by destabilizing their plasma membrane. When treatments are planned correctly, the pulse parameters and location of the electrodes for delivering the pulses are selected to permit destruction of the target tissue without causing thermal damage to the surrounding structures. This allows for the treatment of surgically inoperable masses that are located near major blood vessels and nerves. In select cases of high-dose IRE, where a large ablation volume is desired without increasing the number of electrode insertions, it can become challenging to design a pulse protocol that is inherently nonthermal. To solve this problem we have developed a new electrosurgical device that requires no external equipment or protocol modifications. The design incorporates a phase change material (PCM) into the electrode core that melts during treatment and absorbs heat out of the surrounding tissue. Here, this idea is reduced to practice by testing hollow electrodes filled with gallium on tissue phantoms and monitoring temperature in real time. Additionally, the experimental data generated are used to validate a numerical model of the heat transfer problem, which is then applied to investigate the cooling performance of other classes of PCMs. The results indicate that metallic PCMs, such as gallium, are better suited than organics or salt hydrates for thermal management, because their comparatively higher thermal conductivity aids in heat dissipation. However, the melting point of the metallic PCM must be properly adjusted to ensure that the phase transition is not completed before the end of treatment. When translated clinically, phase change electrodes have the potential to continue to allow IRE to be performed safely near critical structures, even in high-dose cases.

References

References
1.
Okino
,
M.
, and
Mohri
,
H.
,
1987
, “
Effects of a High-Voltage Electrical Impulse and an Anticancer Drug on in Vivo Growing Tumors
,”
Jpn. J. Cancer Res.
,
78
(
12
), pp.
1319
1321
.
2.
Titomirov
,
A. V.
,
Sukharev
,
S.
, and
Kistanova
,
E.
,
1991
, “
In Vivo Electroporation and Stable Transformation of Skin Cells of Newborn Mice by Plasmid DNA
,”
Biochim. Biophys. Acta
,
1088
(
1
), pp.
131
134
.10.1016/0167-4781(91)90162-F
3.
Neumann
,
E.
,
Schaeferridder
,
M.
,
Wang
,
Y.
, and
Hofschneider
,
P. H.
,
1982
, “
Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields
,”
Embo. J.
,
1
(
7
), pp.
841
845
.
4.
Davalos
,
R. V.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
5.
Pavliha
,
D.
,
Kos
,
B.
,
Zupanic
,
A.
,
Marcan
,
M.
,
Sersa
,
G.
, and
Miklavcic
,
D.
,
2012
, “
Patient-Specific Treatment Planning of Electrochemotherapy: Procedure Design and Possible Pitfalls
,”
Bioelectrochemistry
,
87
, pp.
265
273
.10.1016/j.bioelechem.2012.01.007
6.
Garcia
,
P. A.
,
Pancotto
,
T.
,
Rossmeisl
,
J. H.
,
Henao-Guerrero
,
N.
,
Gustafson
,
N. R.
,
Daniel
,
G. B.
,
Robertson
,
J. L.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient
,”
Technol. Cancer Res. Treat.
,
10
(
1
), pp.
73
83
.
7.
Neal
,
R. E.
2nd
,
Rossmeisl
,
J. H.
Jr.
,
Garcia
,
P. A.
,
Lanz
,
O. I.
,
Henao-Guerrero
,
N.
, and
Davalos
,
R. V.
,
2011
, “
Successful Treatment of a Large Soft Tissue Sarcoma With Irreversible Electroporation
,”
J. Clin. Oncol
.
29
(
13
), pp.
e372
e377
.10.1200/JCO.2010.33.0902
8.
Weaver
,
J. C.
, and
Chizmadzhev
,
Y. A.
,
1996
, “
Theory of Electroporation: A Review
,”
Bioelectrochem. Bioenergy
,
41
(
2
), pp.
135
160
.10.1016/S0302-4598(96)05062-3
9.
Mir
,
L. M.
,
Belehradek
,
M.
,
Domenge
,
C.
,
Orlowski
,
S.
,
Poddevin
,
B.
,
Belehradek
,
J.
Jr.
,
Schwaab
,
G.
,
Luboinski
,
B.
, and
Paoletti
,
C.
,
1991
, “
Electrochemotherapy, A New Antitumor Treatment: First Clinical Trial
,”
C. R. Acad. Sci. III
,
313
(
13
), pp.
613
618
.
10.
Daud
,
A. I.
,
DeConti
,
R. C.
,
Andrews
,
S.
,
Urbas
,
P.
,
Riker
,
A. I.
,
Sondak
,
V. K.
,
Munster
,
P. N.
,
Sullivan
,
D. M.
,
Ugen
,
K. E.
,
Messina
,
J. L.
, and
Heller
,
R.
,
2008
, “
Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma
,”
J. Clin. Oncol.
,
26
(
36
), pp.
5896
5903
.10.1200/JCO.2007.13.9048
11.
Thomson
,
K. R.
,
Cheung
,
W.
,
Ellis
,
S. J.
,
Park
,
D.
,
Kavnoudias
,
H.
,
Loader-Oliver
,
D.
,
Roberts
,
S.
,
Evans
,
P.
,
Ball
,
C.
, and
Haydon
,
A.
,
2011
, “
Investigation of the Safety of Irreversible Electroporation in Humans
,”
J. Vasc. Interv. Radiol.
,
22
(
5
), pp.
611
621
.10.1016/j.jvir.2010.12.014
12.
Gehl
,
J.
,
2003
, “
Electroporation: Theory and Methods, Perspectives for Drug Delivery, Gene Therapy and Research
,”
Acta Physiol. Scand.
,
177
(
4
), pp.
437
447
.10.1046/j.1365-201X.2003.01093.x
13.
Li
,
W.
,
Fan
,
Q. Y.
,
Ji
,
Z. W.
,
Qiu
,
X. C.
, and
Li
,
Z.
,
2011
, “
The Effects of Irreversible Electroporation (IRE) on Nerves
,”
Plos One
,
6
(
4
), p.
e18831
.10.1371/journal.pone.0018831
14.
Maor
,
E.
,
Ivorra
,
A.
,
Leor
,
J.
, and
Rubinsky
,
B.
,
2007
, “
The Effect of Irreversible Electroporation on Blood Vessels
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
307
312
.
15.
Rubinsky
,
B.
,
Onik
,
G.
, and
Mikus
,
P.
,
2007
, “
Irreversible Electroporation: A New Ablation Modality—Clinical Implications
,”
Technol. Cancer Res. Treat.
,
6
(
1
), pp.
37
48
.
16.
Appelbaum
,
L.
,
Ben-David
,
E.
,
Sosna
,
J.
,
Nissenbaum
,
Y.
, and
Goldberg
,
S. N.
,
2012
, “
US Findings After Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation
,”
Radiology
,
262
(
1
), pp.
117
125
.10.1148/radiol.11110475
17.
Becker
,
S. M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Thermal Damage Reduction Associated With in Vivo Skin Electroporation: A Numerical Investigation Justifying Aggressive Pre-Cooling
,”
Int. J. Heat Mass Transfer
,
50
, pp.
105
116
.10.1016/j.ijheatmasstransfer.2006.06.030
18.
Arena
,
C. B.
,
Mahajan
,
R. L.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2012
, “
Towards the Development of Latent Heat Storage Electrodes for Electroporation-Based Therapies
,”
Appl. Phys. Lett.
,
101
(
8
), p.
083902
.10.1063/1.4747332
19.
Mondieig
,
D.
,
Rajabalee
,
F.
,
Laprie
,
A.
,
Oonk
,
H. A. J.
,
Calvet
,
T.
, and
Cuevas-Diarte
,
M. A.
,
2003
, “
Protection of Temperature Sensitive Biomedical Products Using Molecular Alloys As Phase Change Material
,”
Transfus Apher Sci.
,
28
(
2
), pp.
143
148
.10.1016/S1473-0502(03)00016-8
20.
Shim
,
H.
,
McCullough
,
E. A.
,and
Jones
,
B. W.
,
2001
, “
Using Phase Change Materials in Clothing
,”
Textile Res. J.
,
71
(
6
), pp.
495
502
.10.1177/004051750107100605
21.
Sheeran
,
P. S.
, and
Dayton
,
P. A.
,
2012
, “
Phase-Change Contrast Agents for Imaging and Therapy
,”
Curr. Pharm. Design
,
18
(
15
), pp.
2152
2165
.10.2174/138161212800099883
22.
Sheeran
,
P. S.
,
Luois
,
S. H.
,
Mullin
,
L. B.
,
Matsunaga
,
T. O.
, and
Dayton
,
P. A.
,
2012
, “
Design of Ultrasonically-Activatable Nanoparticles Using Low Boiling Point Perfluorocarbons
,”
Biomaterials
,
33
(
11
), pp.
3262
3269
.10.1016/j.biomaterials.2012.01.021
23.
Marongiu
,
M. J.
, and
Clarksean
,
R.
,
1997
, “
Thermal Management of Electronics Enclosures Under Unsteady Heating/Cooling Conditions Using Phase Change Materials (PCM)
,”
Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference (IECEC)
, pp.
1865
1870
.
24.
Ge
,
H.
, and
Liu
,
J.
,
2012
, “
Phase Change Effect of Low Melting Point Metal for an Automatic Cooling of USB Flash Memory
,”
Front. Energy
,
6
(
3
), pp.
207
209
.10.1007/s11708-012-0204-z
25.
Prakash
,
J.
,
Garg
,
H. P.
, and
Datta
,
G.
,
1985
, “
A Solar Water Heater With a Built-in Latent-Heat Storage
,”
Energy Convers. Manage.
,
25
(
1
), pp.
51
56
.10.1016/0196-8904(85)90069-X
26.
Benard
,
C.
,
Body
,
Y.
, and
Zanoli
,
A.
,
1985
, “
Experimental Comparison of Latent and Sensible Heat Thermal Walls
,”
Solar Energy
,
34
(
6
), pp.
475
487
.10.1016/0038-092X(85)90021-0
27.
Etheridge
,
M. L.
,
Choi
,
J.
,
Ramadhyani
,
S.
, and
Bischof
,
J. C.
,
2013
, “
Methods for Characterizing Convective Cryoprobe Heat Transfer in Ultrasound Gel Phantoms
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021001
.10.1115/1.4023237
28.
Wagner
,
G. H.
, and
Gitzen
,
W. H.
,
1952
, “
Gallium
,”
J. Chem. Educ.
,
29
(
4
), p.
162
.10.1021/ed029p162.2
29.
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2004
, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Pack Technol.
,
27
(
1
), pp.
191
199
.10.1109/TCAPT.2004.825758
30.
Dantzig
,
J. A.
,
1989
, “
Modeling Liquid-Solid Phase Changes With Melt Convection
,”
Int. J. Numer. Methods Eng.
,
28
(
8
), pp.
1769
1785
.10.1002/nme.1620280805
31.
Garcia
,
P. A.
,
Davalos
,
R. V.
, and
Pearce
,
J. A.
,
2012
, “
A Comparison Between the Pulsed and Duty Cycle Approaches Used to Capture the Thermal Response of Tissue During Electroporation-Based Therapies
,”
ASME Summer Bioengineering Conference Fajardo
,
Puerto Rico
, p.
80574
.
32.
Deri
,
B.
,
Kotovsky
,
J.
, and
Spadaccini
,
C.
,
2010
, “
Assessment of Latent Heat Reservoirs for Thermal Management of QCW Laser Diodes
,” No. LLNL-TR-425903, Lawrence Livermore National Laboratory, Livermore, CA.
33.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
34.
Amin
,
D. V.
,
Lozanne
,
K.
,
Parry
,
P. V.
,
Engh
,
J. A.
,
Seelman
,
K.
, and
Mintz
,
A.
,
2011
, “
Image-Guided Frameless Stereotactic Needle Biopsy in Awake Patients Without the Use of Rigid Head Fixation
,”
J. Neurosurg.
,
114
(
5
), pp.
1414
1420
.10.3171/2010.7.JNS091493
35.
Predel
,
B.
,
1960
, “
Die Zustandsbilder Gallium-Wismut und Gallium-Quecksilber, Vergleich der Koexistenzkurven mit den Theorien der Entmischung
,”
Z. Phys. Chem.
,
24
(
3–4
), pp.
206
216
.10.1524/zpch.1960.24.3_4.206
36.
Antunes
,
C. L.
,
Almeida
,
T. R. O.
,
Raposeiro
,
N.
,
Goncalves
,
B.
, and
Almeida
,
P.
,
2012
, “
Using a Tubular Electrode for Radiofrequency Ablation Numerical and Experimental Analysis
,”
Compel
,
31
(
4
), pp.
1077
1086
.10.1108/03321641211227320
37.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
38.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
,
Olson
,
J. D.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: in Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.10.1007/s00232-010-9284-z
39.
Arena
,
C. B.
,
Szot
,
C. S.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2012
, “
A Three-Dimensional In Vitro Tumor Platform for Modeling Therapeutic Irreversible Electroporation
,”
Biophys. J
,
103
(
9
), pp.
2033
2042
.10.1016/j.bpj.2012.09.017
40.
Faroja
,
M.
,
Ahmed
,
M.
,
Appelbaum
,
L.
,
Ben-David
,
E.
,
Moussa
,
M.
,
Sosna
,
J.
,
Nissenbaum
,
I.
, and
Goldberg
,
S. N.
,
2013
, “
Irreversible Electroporation Ablation: Is All the Damage Nonthermal?
,”
Radiology
,
266
(
2
), pp.
462
470
.10.1148/radiol.12120609
41.
Ben-David
,
E.
,
Appelbaum
,
L.
,
Sosna
,
J.
,
Nissenbaum
,
I.
, and
Goldberg
,
S. N.
,
2012
, “
Characterization of Irreversible Electroporation Ablation in in Vivo Porcine Liver
,”
Am. J. Roentgenol.
,
198
(
1
), pp.
W62
W68
.10.2214/AJR.11.6940
42.
Stupar
,
A.
,
Drofenik
,
U.
, and
Kolar
,
J. W.
,
2010
, “
Application of Phase Change Materials for Low Duty Cycle High Peak Load Power Supplies
,”
6th International Conference on Integrated Power Electronics Systems (CIPS)
, pp.
1
11
.
43.
Lacroix
,
M.
,
2001
, “
Contact Melting of a Phase Change Material Inside a Heated Parallelepedic Capsule
,”
Energy Convers. Manage.
,
42
(
1
), pp.
35
47
.10.1016/S0196-8904(00)00047-9
44.
Davalos
,
R. V.
,
Otten
,
D. M.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2004
, “
Electrical Impedance Tomography for Imaging Tissue Electroporation
,”
IEEE Trans. Biomed. Eng.
,
51
(
5
), pp.
761
767
.10.1109/TBME.2004.824148
45.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
Jr.
,
Neal
,
R. E.
2nd
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
A Parametric Study Delineating Irreversible Electroporation From Thermal Damage Based on a Minimally Invasive Intracranial Procedure
,”
Biomed. Eng. Online
,
10
(
1
), p.
34
.10.1186/1475-925X-10-34
You do not currently have access to this content.