Human vocal folds experience flow-induced vibrations during phonation. In previous computational models, the vocal fold dynamics has been treated with linear elasticity theory in which both the strain and the displacement of the tissue are assumed to be infinitesimal (referred to as model I). The effect of the nonlinear strain, or geometric nonlinearity, caused by finite displacements is yet not clear. In this work, a two-dimensional model is used to study the effect of geometric nonlinearity (referred to as model II) on the vocal fold and the airflow. The result shows that even though the deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold, the geometric nonlinear effect is still significant. Specifically, model I underpredicts the gap width, the flow rate, and the impact stress on the medial surfaces as compared to model II. The study further shows that the differences are caused by the contact mechanics and, more importantly, the fluid-structure interaction that magnifies the error from the small-displacement assumption. The results suggest that using the large-displacement formulation in a computational model would be more appropriate for accurate simulations of the vocal fold dynamics.

References

References
1.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
,
1972
, “
Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,”
Bell Syst. Tech. J.
,
51
, pp.
1233
1268
.10.1002/j.1538-7305.1972.tb02651.x
2.
Jiang
,
J.
, and
Zhang
,
Y.
,
2002
, “
Chaotic Vibration Induced by Turbulent Noise in a Two-Mass Model of Vocal Folds
,”
J. Acoust. Soc. Am.
,
112
(
5
), pp.
2127
2133
.10.1121/1.1509430
3.
Alipour
,
F.
,
Brucker
,
C.
,
Cook
,
D.
,
Gommel
,
A.
,
Kaltenbacher
,
M.
,
Mattheus
,
W.
,
Mongeau
,
L.
,
Nauman
,
E.
,
Schwarze
,
R.
,
Tokuda
,
I.
, and
Zorner
,
S.
,
2011
, “
Mathematical Models and Numerical Schemes for the Simulation of Human Phonation
,”
Cur. Bioinf.
,
6
(
3
), pp.
323
343
.10.2174/157489311796904655
4.
Alipour
,
F.
,
Berry
,
D.
, and
Titze
,
I.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
14
, pp.
442
454
.
5.
Luo
,
H.
,
Mittal
,
R.
, and
Bielamowicz
,
S. A.
,
2009
, “
Analysis of Flow-Structure Interaction in the Larynx During Phonation Using an Immersed-Boundary Method
,”
J. Acoust. Soc. Am.
,
126
, pp.
816
824
.10.1121/1.3158942
6.
Zheng
,
X.
,
Xue
,
Q.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2010
, “
A Coupled Sharp-Interface Immersed-Boundary-Finiteelement Method for Flow-Structure Interaction With Application to Human Phonation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111003
.10.1115/1.4002587
7.
Titze
,
I.
,
1994
,
Principles of Voice Production
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Pickup
,
B. A.
, and
Thomson
,
S. L.
,
2011
, “
Identification of Geometric Parameters Influencing the Flow-Induced Vibration of a Two-Layer Self-Oscillating Computational Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
129
, pp.
2121
2132
.10.1121/1.3557046
9.
Smith
,
S. L.
, and
Thomson
,
S. L.
,
2012
, “
Effect of Inferior Surface Angle on the Self-Oscillation of a Computational Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
131
, pp.
4062
4075
.10.1121/1.3695403
10.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R.
,
2006
, “
A Constitutive Model of the Human Vocal Fold Cover for Fundamental Frequency Regulation
,”
J. Acoust. Soc. Am.
,
119
, pp.
1050
1062
.10.1121/1.2159433
11.
Chan
,
R.
,
Siegmund
,
T.
, and
Zhang
,
K.
,
2009
, “
Biomechanics of Fundamental Frequency Regulation: Constitutive Modeling of the Vocal Fold Lamina Propria
,”
Logoped. Phoniatr. Vocol.
,
34
(
4
), pp.
181
189
.10.3109/14015430902913501
12.
Doyle
,
J. F.
,
2001
,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
,
Springer-Verlag
,
New York
.
13.
Gunter
,
H.
,
2003
, “
A Mechanical Model of Vocal-Fold Collision With High Spatial and Temporal Resolution
,”
J. Acoust. Soc. Am.
,
113
, pp.
994
1000
.10.1121/1.1534100
14.
Tao
,
C.
,
Jiang
,
J.
, and
Zhang
,
Y.
,
2006
, “
Simulation of Vocal Fold Impact Pressures With a Self-Oscillating Finite-Element Model
,”
J. Acoust. Soc. Am.
,
119
, pp.
3987
3994
.10.1121/1.2197798
15.
Goldsmith
,
W.
,
2001
,
Impact: The Theory and Physical Behavior of Colliding Solids
,
Dover
,
New York
.
16.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S.
,
Walsh
,
R.
, and
Hahn
,
J.
,
2008
, “
An Immersed-Boundary Method for Flow–Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
, pp.
9303
9332
.10.1016/j.jcp.2008.05.001
17.
Zemlin
,
W.
,
1997
,
Speech and Hearing Science: Anatomy & Physiology
,
4th ed.
,
Allyn and Bacon
,
Boston, MA
.
18.
Decker
,
G.
, and
Thomson
,
S.
,
2007
, “
Computational Simulations of Vocal Fold Vibration: Bernoulli Versus Navier-Stokes
,”
J. Voice
,
21
(
3
), pp.
273
284
.10.1016/j.jvoice.2005.12.002
19.
Titze
,
I. R.
,
1994
, “
Mechanical Stress in Phonation
,”
J. Voice
,
8
(
2
), pp.
99
105
.10.1016/S0892-1997(05)80302-9
You do not currently have access to this content.