The reverse shoulder replacement, recommended for the treatment of several shoulder pathologies such as cuff tear arthropathy and fractures in elderly people, changes the biomechanics of the shoulder when compared to the normal anatomy. Although several musculoskeletal models of the upper limb have been presented to study the shoulder joint, only a few of them focus on the biomechanics of the reverse shoulder. This work presents a biomechanical model of the upper limb, including a reverse shoulder prosthesis, to evaluate the impact of the variation of the joint geometry and position on the biomechanical function of the shoulder. The biomechanical model of the reverse shoulder is based on a musculoskeletal model of the upper limb, which is modified to account for the properties of the DELTA® reverse prosthesis. Considering two biomechanical models, which simulate the anatomical and reverse shoulder joints, the changes in muscle lengths, muscle moment arms, and muscle and joint reaction forces are evaluated. The muscle force sharing problem is solved for motions of unloaded abduction in the coronal plane and unloaded anterior flexion in the sagittal plane, acquired using video-imaging, through the minimization of an objective function related to muscle metabolic energy consumption. After the replacement of the shoulder joint, significant changes in the length of the pectoralis major, latissimus dorsi, deltoid, teres major, teres minor, coracobrachialis, and biceps brachii muscles are observed for a reference position considered for the upper limb. The shortening of the teres major and teres minor is the most critical since they become unable to produce active force in this position. Substantial changes of muscle moment arms are also observed, which are consistent with the literature. As expected, there is a significant increase of the deltoid moment arms and more fibers are able to elevate the arm. The solutions to the muscle force sharing problem support the biomechanical advantages attributed to the reverse shoulder design and show an increase in activity from the deltoid, teres minor, and coracobrachialis muscles. The glenohumeral joint reaction forces estimated for the reverse shoulder are up to 15% lower than those in the normal shoulder anatomy. The data presented here complements previous publications, which, all together, allow researchers to build a biomechanical model of the upper limb including a reverse shoulder prosthesis.

References

References
1.
Bohsali
,
K. I.
,
Wirth
,
M. A.
, and
Rockwood
,
C. A.
,
2006
, “
Complications of Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am. Vol.
,
88
(
10
), pp.
2279
2292
.10.2106/JBJS.F.00125
2.
Boileau
,
P.
,
Watkinson
,
D. J.
,
Hatzidakis
,
A. M.
, and
Balg
,
F.
,
2005
, “
Grammont Reverse Prosthesis: Design, Rationale, and Biomechanics
,”
J. Shoulder Elbow Surg.
,
14
(
1
), pp.
147S
161S
.10.1016/j.jse.2004.10.006
3.
Sanchez-Sotelo
,
J.
,
2009
, “
Reverse Total Shoulder Arthroplasty
,”
Clin. Anat.
,
22
(
2
), pp.
172
182
.10.1002/ca.20736
4.
Katz
,
D.
,
O’Toole
,
G.
,
Cogswell
,
L.
,
Sauzieres
,
P.
, and
Valenti
,
P.
,
2007
, “
A History of the Reverse Shoulder Prosthesis
,”
Int. J. Shoulder Surg.
,
1
(
4
), pp.
108
113
.10.4103/0973-6042.37113
5.
Hsu
,
S. H.
,
Greiwe
,
R. M.
,
Saifi
,
C.
, and
Ahmad
,
C. S.
,
2011
, “
Reverse Total Shoulder Arthroplasty—Biomechanics and Rationale
,”
Oper. Tech. Orthop.
,
21
(
1
), pp.
52
59
.10.1053/j.oto.2010.10.006
6.
Roche
,
C.
,
Flurin
,
P. H.
,
Wright
,
T.
,
Crosby
,
L. A.
,
Mauldin
,
M.
, and
Zuckerman
,
J. D.
,
2009
, “
An Evaluation of the Relationships Between Reverse Shoulder Design Parameters and Range of Motion, Impingement, and Stability
,”
J. Shoulder Elbow Surg.
,
18
(
5
), pp.
734
741
.10.1016/j.jse.2008.12.008
7.
Kwon
,
Y. W.
,
Pinto
,
V. J.
,
Yoon
,
J.
,
Frankle
,
M. A.
,
Dunning
,
P. E.
, and
Sheikhzadeh
,
A.
,
2012
, “
Kinematic Analysis of Dynamic Shoulder Motion in Patients With Reverse Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
21
(
9
), pp.
1184
1190
.10.1016/j.jse.2011.07.031
8.
Nicholson
,
G.
,
Strauss
,
E.
, and
Sherman
,
S.
,
2011
, “
Scapular Notching: Recognition and Strategies to Minimize Clinical Impact
,”
Clin. Orthop. Relat. Res.
,
469
(
9
), pp.
2521
2530
.10.1007/s11999-010-1720-y
9.
Sanchez-Sotelo
,
J.
,
2011
, “
Total Shoulder Arthroplasty
,”
Open Orthop. J.
,
5
, pp.
106
114
.10.2174/1874325001105010106
10.
Stephenson
,
D. R.
,
Oh
,
J. H.
,
McGarry
,
M. H.
,
Hatch
,
G. F. R.
III
, and
Lee
,
T. Q.
,
2011
, “
Effect of Humeral Component Version on Impingement in Reverse Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
20
(
4
), pp.
652
658
.10.1016/j.jse.2010.08.020
11.
Dziewiecki
,
K.
,
Blajer
,
W.
,
Mazur
,
Z.
, and
Czaplicki
,
A.
,
2013
, “
Modeling and Computational Issues in the Inverse Dynamics Simulation of Triple Jump
,”
Multibody Syst. Dyn.
, (in press).10.1007/s11044-013-9375-6
12.
Herrmann
,
S.
,
Woernle
,
C.
,
Kaehler
,
M.
,
Rachholz
,
R.
,
Souffrant
,
R.
,
Zierath
,
J.
,
Kluess
,
D.
, and
Bader
,
R.
,
2012
, “
HiL Simulation for Testing Joint Stability After Total Knee Arthroplasty
,”
Multibody Syst. Dyn.
,
28
(
1
), pp.
55
67
.10.1007/s11044-011-9283-6
13.
Charlton
,
I. W.
and
Johnson
,
G. R.
,
2006
, “
A Model for the Prediction of the Forces at the Glenohumeral Joint
,”
Proc. Inst. Mech. Eng., Part H, J. Eng. Med.
,
220
(
8
), pp.
801
812
.10.1243/09544119JEIM147
14.
Dickerson
,
C. R.
,
Chaffin
,
D. B.
, and
Hughes
,
R. E.
,
2007
, “
A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
389
400
.10.1080/10255840701592727
15.
Terrier
,
A.
,
Reist
,
A.
,
Merlini
,
F.
, and
Farron
,
A.
,
2008
, “
Simulated Joint and Muscle Forces in Reversed and Anatomic Shoulder Prostheses
,”
J. Bone Jt. Surg., Br.
Vol.,
90
(
6
), pp.
751
756
.10.1302/0301-620X.90B6.19708
16.
Nikooyan
,
A. A.
,
Veeger
,
H. E.
,
Chadwick
,
E. K.
,
Praagman
,
M.
, and
Helm
,
F. C.
,
2011
, “
Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow
,”
Med. Biol. Eng. Comput.
,
49
(
12
), pp.
1425
1435
.10.1007/s11517-011-0839-7
17.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2012
, “
A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle
,”
Multibody Syst. Dyn.
,
28
(
1
), pp.
83
108
.10.1007/s11044-011-9297-0
18.
Van der
Helm
,
F. C. T.
,
1998
, “
The ‘Reversed’ Glenohumeral Endoprosthesis: The Role of the Rotator Cuff Muscles for Stability and Strength
,”
J. Biomech.
,
31
(
S1
), pp.
27
.10.1016/S0021-9290(98)80057-2
19.
Kontaxis
,
A.
and
Johnson
,
G. R.
,
2009
, “
The Biomechanics of Reverse Anatomy Shoulder Replacement—A Modelling Study
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
3
), pp.
254
260
.10.1016/j.clinbiomech.2008.12.004
20.
Masjedi
,
M.
and
Johnson
,
G. R.
,
2010
, “
Glenohumeral Contact Forces in Reversed Anatomy Shoulder Replacement
,”
J. Biomech.
,
43
(
13
), pp.
2493
2500
.10.1016/j.jbiomech.2010.05.024
21.
Spitzer
,
V.
,
Ackerman
,
M. J.
,
Scherzinger
,
A. L.
, and
Whitlock
,
D.
,
1996
, “
The Visible Human Male: A Technical Report
,”
J. Am. Med. Inform. Assoc.
,
3
(
2
), pp.
118
130
.10.1136/jamia.1996.96236280
22.
Sherman
,
M.
,
Seth
,
A.
, and
Delp
,
S.
,
2010
, “
How to Compute Muscle Moment Arm Using Generalized Coordinates
,” Report, Stanford University, Stanford, CA.
23.
Garner
,
B. A.
and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.10.1080/10255840008908000
24.
Favre
,
P.
,
Sheikh
,
R.
,
Fucentese
,
S. F.
, and
Jacob
,
H. A.
,
2005
, “
An Algorithm for Estimation of Shoulder Muscle Forces for Clinical Use
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
8
), pp.
822
833
.10.1016/j.clinbiomech.2005.04.007
25.
Van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Pronk
,
G. M.
,
Van der Woude
,
L. H. V.
, and
Rozendal
,
R. H.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling for the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.10.1016/0021-9290(92)90270-B
26.
Veeger
,
H. E. J.
,
Yu
,
B.
,
An
,
K.
, and
Rozendal
,
R. H.
,
1997
, “
Parameters for Modelling the Upper Extremity
,”
J. Biomech.
,
30
(
6
), pp.
647
652
.10.1016/S0021-9290(97)00011-0
27.
Breteler
,
M. D. K.
,
Spoor
,
C. W.
, and
Van der Helm
,
F. C. T.
,
1999
, “
Measuring Muscle and Joint Geometry Parameters of a Shoulder for Modeling Purposes
,”
J. Biomech.
,
32
(
11
), pp.
1191
1197
.10.1016/S0021-9290(99)00122-0
28.
Ambrósio
,
J.
,
Quental
,
C.
,
Pilarczyk
,
B.
,
Folgado
,
J.
, and
Monteiro
,
J.
,
2011
, “
Multibody biomechanical models of the upper limb
,”
Procedia IUTAM
,
2
, pp.
4
17
.10.1016/j.piutam.2011.04.002
29.
Matava
,
M. J.
,
Purcell
,
D. B.
, and
Rudzki
,
J. R.
,
2005
, “
Partial-Thickness Rotator Cuff Tears
,”
Am. J. Sports Med.
,
33
(
9
), pp.
1405
1417
.10.1177/0363546505280213
30.
Melis
,
B.
,
DeFranco
,
M. J.
,
Ladermann
,
A.
,
Barthelemy
,
R.
, and
Walch
,
G.
,
2011
, “
The Teres Minor Muscle in Rotator Cuff Tendon Tears
,”
Skeletal Radiol.
,
40
(
10
), pp.
1335
1344
.10.1007/s00256-011-1178-3
31.
Senk
,
M.
and
Chèze
,
L.
,
2010
, “
A New Method for Motion Capture of the Scapula Using an Optoelectronic Tracking Device: A Feasibility Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
397
401
.10.1080/10255840903263945
32.
Silva
,
M. P. T.
and
Ambrósio
,
J. A. C.
,
2002
, “
Kinematic Data Consistency in the Inverse Dynamic Analysis of Biomechanical Systems
,”
Multibody Syst. Dyn.
,
8
(
2
), pp.
219
239
.10.1023/A:1019545530737
33.
Modenese
,
L.
and
Phillips
,
A. T. M.
,
2012
, “
Prediction of Hip Contact Forces and Muscle Activations During Walking at Different Speeds
,”
Multibody Syst. Dyn.
,
28
(
1-2
), pp.
157
168
.10.1007/s11044-011-9274-7
34.
Praagman
,
M.
,
Chadwick
,
E. K.
,
Van der Helm
,
F. C.
, and
Veeger
,
H. E.
,
2006
, “
The Relationship Between Two Different Mechanical Cost Functions and Muscle Oxygen Consumption
,”
J. Biomech.
,
39
(
4
), pp.
758
765
.10.1016/j.jbiomech.2004.11.034
35.
Chadwick
,
E. K. J.
and
Van der Helm
,
F. C. T.
,
2003
, “
Musculo-Skeletal Modelling of the Shoulder
,”
Shoulder Biomechanics Tutorial of the XIXth Congress of the International Society of Biomechanics, University of Otago
,
New Zealand
.
36.
Sirveaux
,
F.
,
Favard
,
L.
,
Oudet
,
D.
,
Huquet
,
D.
,
Walch
,
G.
, and
Molé
,
D.
,
2004
, “
Grammont Inverted Total Shoulder Arthroplasty in the Treatment of Glenohumeral Osteoarthritis With Massive Rupture of the Cuff. Results of a Multicentre Study of 80 Shoulders
,”
J. Bone Jt.Surg., Br
. Vol.,
86
(
3
), pp.
388
395
.10.1302/0301-620X.86B3.14024
37.
Frankle
,
M.
,
Siegal
,
S.
,
Pupello
,
D.
,
Saleem
,
A.
,
Mighell
,
M.
, and
Vasey
,
M.
,
2005
, “
The Reverse Shoulder Prosthesis for Glenohumeral Arthritis Associated With Severe Rotator Cuff Deficiency. A Minimum Two-Year Follow-Up Study of Sixty Patients
,”
J. Bone Jt. Surg., Am.
Vol.,
87
(
8
), pp.
1697
1705
.10.2106/JBJS.D.02813
38.
Werner
,
C. M.
,
Steinmann
,
P. A.
,
Gilbart
,
M.
, and
Gerber
,
C.
,
2005
, “
Treatment of Painful Pseudoparesis due to Irreparable Rotator Cuff Dysfunction With the Delta III Reverse-Ball-and-Socket Total Shoulder Prosthesis
,”
J. Bone Jt. Surg., Am.
Vol.,
87
(
7
), pp.
1476
1486
.10.2106/JBJS.D.02342
39.
Bergmann
,
J. H. M.
,
De Leeuw
,
M.
,
Janssen
,
T. W. J.
,
Veeger
,
D. H. E. J.
, and
Willems
,
W. J.
,
2008
, “
Contribution of the Reverse Endoprosthesis to Glenohumeral Kinematics
,”
Clin. Orthop. Relat. Res.
,
466
(
3
), pp.
594
598
.10.1007/s11999-007-0091-5
40.
De Wilde
,
L. F.
,
Plasschaert
,
F. S.
,
Audenaert
,
E. A.
, and
Verdonk
,
R. C.
,
2005
, “
Functional Recovery After a Reverse Prosthesis for Reconstruction of the Proximal Humerus in Tumor Surgery
,”
Clin. Orthop. Relat. Res.
,
430
, pp.
156
162
.10.1097/01.blo.0000146741.83183.18
41.
Kontaxis
,
A.
and
Johnson
,
G. R.
,
2008
, “
Adaptation of Scapula Lateral Rotation After Reverse Anatomy Shoulder Replacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
1
), pp.
73
80
.10.1080/10255840701552069
42.
Ackland
,
D. C.
,
Roshan-Zamir
,
S.
,
Richardson
,
M.
, and
Pandy
,
M. G.
,
2011
, “
Muscle and Joint-Contact Loading at the Glenohumeral Joint After Reverse Total Shoulder Arthroplasty
,”
J. Orthop. Res.
,
29
(
12
), pp.
1850
1858
.10.1002/jor.21437
43.
Ackland
,
D. C.
,
Roshan-Zamir
,
S.
,
Richardson
,
M.
, and
Pandy
,
M. G.
,
2010
, “
Moment Arms of the Shoulder Musculature After Reverse Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg.
,
92
(
5
), pp.
1221
1230
.10.2106/JBJS.I.00001
44.
Greiner
,
S.
,
Schmidt
,
C.
,
Konig
,
C.
,
Perka
,
C.
, and
Herrmann
,
S.
,
2013
, “
Lateralized Reverse Shoulder Arthroplasty Maintains Rotational Function of the Remaining Rotator Cuff
,”
Clin. Orthop. Relat. Res.
,
471
(
3
), pp.
940
946
.10.1007/s11999-012-2692-x
45.
Lam
,
F.
,
Bhatia
,
D. N.
,
Mostofi
,
S. B.
,
Van Rooyen
,
K.
, and
De Beer
,
J. F.
,
2007
, “
Biomechanical Considerations of the Normal and Rotator Cuff Deficient Shoulder and the Reverse Shoulder Prosthesis
,”
Curr. Pract. Orthopaed. Surg.
,
21
(
1
), pp.
40
46
.10.1016/j.cuor.2006.10.004
You do not currently have access to this content.