Computational hemodynamic models of the cardiovascular system are often limited to finite segments of the system and therefore need well-controlled inlet and outlet boundary conditions. Classical boundary conditions are measured total pressure or flow rate imposed at the inlet and impedances of RLR, RLC, or LR filters at the outlet. We present a new approach based on an unidirectional propagative approach (UPA) to model the inlet/outlet boundary conditions on the axisymmetric Navier–Stokes equations. This condition is equivalent to a nonreflecting boundary condition in a fluid–structure interaction model of an axisymmetric artery. First we compare the UPA to the best impedance filter (RLC). Second, we apply this approach to a physiological situation, i.e., the presence of a stented segment into a coronary artery. In that case a reflection index is defined which quantifies the amount of pressure waves reflected upon the singularity.

References

References
1.
Nerem
,
R.
, and
Cornhill
,
J.
,
1980
, “
The Role of Fluid Mechanics in Atherogenesis
,”
ASME J. Biomech. Eng.
,
102
(3), pp.
181
189
.10.1115/1.3149571
2.
Zarins
,
C.
,
Giddens
,
D.
,
Bharadvaj
,
B.
,
Sottiurai
,
V.
,
Mabon
,
R.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
,
53
, pp.
502
514
.10.1161/01.RES.53.4.502
3.
Ku
,
D.
,
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress. Arteriosclerosis
,”
Thromb. Vasc. Biol.
,
5
, pp.
293
302
.10.1161/01.ATV.5.3.293
4.
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
(4B), pp.
588
594
.10.1115/1.2895545
5.
Tropea
,
B.
,
Schwarzacher
,
S.
,
Chang
,
A.
,
Asvar
,
C.
,
Huie
,
P.
,
Sibley
,
R.
, and
Zarins
,
C.
,
2000
, “
Reduction of Aortic Wall Motion Inhibits Hypertension-Mediated Experimental Atherosclerosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
20
, pp.
2127
2133
.10.1161/01.ATV.20.9.2127
6.
Meyerson
,
S.
,
Skelly
,
C.
,
Curi
,
M.
,
Shakur
,
U.
,
Vosicky
,
J.
,
Glagov
,
S.
, and
Schwartz
,
L.
,
2001
, “
The Effects of Extremely Low Shear Stress on Cellular Proliferation and Neointimal Thickening in the Failing Bypass Graft
,”
J. Vasc. Surg.
,
34
, pp.
90
97
.10.1067/mva.2001.114819
7.
Cheng
,
C.
,
Tempel
,
D.
,
van Hageren
, R.
,
van der Baan
,
A.
,
Grosveld
,
F.
,
Daemen
,
M.
,
Krams
,
R.
, and
de Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
, pp.
2744
2753
.10.1161/CIRCULATIONAHA.105.590018
8.
Coskun
,
A.
,
Chen
,
C.
,
Stone
,
P.
, and
Feldman
,
C.
,
2006
, “
Computational Fluid Dynamics Tools Can be Used to Predict the Progression of Coronary Artery Disease
,”
Physica A
,
362
, pp.
182
190
.10.1016/j.physa.2005.09.010
9.
London
,
G.
,
Blacher
,
J.
,
Pannier
,
B.
,
Guérin
,
A.
,
Marchais
,
S.
, and
Safar
,
M.
,
2001
, “
Arterial Wave Reflections and Survival in End-Stage Renal Failure
,”
Hypertension
,
38
, pp.
434
438
.10.1161/01.HYP.38.3.434
10.
Mitchell
,
G.
,
Parise
,
H.
,
Benjamin
,
E.
,
Larson
,
M.
,
Keyes
,
M.
,
Vita
,
J.
,
Vasan
,
R.
, and
Levy
,
D.
,
2004
, “
Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women the Framingham Heart Study
,”
Hypertension
,
43
, pp.
1239
1245
.10.1161/01.HYP.0000128420.01881.aa
11.
Weber
,
T.
,
Auer
,
J.
,
O'Rourke
,
M.
,
Kvas
,
E.
,
Lassnig
,
E.
,
Lamm
,
G.
,
Stark
,
N.
,
Rammer
,
M.
, and
Eber
,
B.
,
2005
, “
Increased Arterial Wave Reflections Predict Severe Cardiovascular Events in Patients Undergoing Percutaneous Coronary Interventions
,”
Eur. Heart J.
,
26
, pp.
2657
2663
.10.1093/eurheartj/ehi504
12.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and in Vitro MRI Measurements
,”
J. Biomech.
,
33
, pp.
137
144
.10.1016/S0021-9290(99)00164-5
13.
Tang
,
D.
,
Yang
,
C.
,
Walker
,
H.
,
Kobayashi
,
S.
, and
Ku
,
D.
,
2002
, “
Simulating Cyclic Artery Compression Using a 3D Unsteady Model With Fluid-Structure Interactions
,”
Comput. Struct.
,
80
, pp.
1651
1665
.10.1016/S0045-7949(02)00111-6
14.
Cebral
,
J.
,
Castro
,
M.
,
Appanaboyina
,
S.
,
Putman
,
C.
,
Milan
,
D.
, and
Frangi
,
A.
,
2005
, “
Efficient Pipeline for Image-Based Patients Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
,
24
, pp.
457
467
.10.1109/TMI.2005.844159
15.
Li
,
M.
,
Beech-Brandt
,
J.
,
John
,
L.
,
Hoskins
,
P.
, and
Easson
,
W.
,
2007
, “
Numerical Analysis of Pulsatile Blood Flow and Vessel Wall Mechanics in Different Degrees of Stenoses
,”
J. Biomech.
,
40
, pp.
3715
3724
.10.1016/j.jbiomech.2007.06.023
16.
Vignon
,
I.
, and
Taylor
,
C.
,
2004
, “
Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Wave in Arteries
,”
Wave Motion
,
39
, pp.
361
374
.10.1016/j.wavemoti.2003.12.009
17.
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
3776
3796
.10.1016/j.cma.2005.04.014
18.
Alastruey
,
J.
,
Parker
,
K.
,
Peiro
,
J.
,
Byrd
,
S.
, and
Sherwin
,
S.
,
2007
, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
, pp.
1794
1805
.10.1016/j.jbiomech.2006.07.008
19.
Marchandise
,
E.
,
Willemet
,
M.
, and
Lacroix
,
V.
,
2009
, “
A Numerical Hemodynamic Tool for Predictive Vascular Surgery
,”
Med. Eng. Phys.
,
31
, pp.
131
144
.10.1016/j.medengphy.2008.04.015
20.
Kim
,
H.
,
Vignon-Clementel
,
I.
,
Coogan
,
J.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
10
(
38
), pp.
3195
3209
.10.1007/s10439-010-0083-6
21.
Olufsen
,
M.
,
1999
, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
276
, pp.
257
268
. Available at: http://ajpheart.physiology.org/content/276/1/H257
22.
Olufsen
,
M.
,
Peskin
,
C.
,
Kim
,
W.
,
Pedersen
,
E.
,
Nadim
,
N.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
, pp.
1281
1299
.10.1114/1.1326031
23.
Willemet
,
M.
,
Lacroix
,
V.
, and
Marchandise
,
E.
,
2011
, “
Inlet Boundary Conditions for Blood Flow Simulations in Truncated Arterial Networks
,”
J. Biomech.
,
44
, pp.
897
903
.10.1016/j.jbiomech.2010.11.036
24.
Bokov
,
P.
,
2011
, “
Description Expérimentale rt Numérique de L'interaction Entre un Stent Biodégradable et la Paroi Artérielle
,” Ph.D. Thesis, Université Paris Diderot.
25.
McDonald
A. R.
,
1960
,
Blood Flow in Arteries
,
Williams and Wilkins
, Baltimore, MD.
26.
Ozolanta
,
I.
,
Tetere
,
G.
,
Purinya
,
B.
, and
Kasyanov
,
V.
,
1998
, “
Changes in the Mechanical Properties, Biochemical Contents and Wall Structure of the Human Coronary Arteries With Age and Sex
,”
Med. Eng. Phys.
,
20
, pp.
523
533
.10.1016/S1350-4533(98)00050-2
27.
Seo
,
T.
,
Schachter
,
L.
, and
Barakat
,
A.
,
2005
, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
444
456
.10.1007/s10439-005-2499-y
28.
LaDisa
,
J. F. J.
,
Olson
,
L.
,
Guler
,
I.
,
Hettrick
,
D.
,
Kersten
,
J.
,
Warltier
,
D.
, and
Pagel
,
P.
,
2005
, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
, pp.
947
957
.10.1152/japplphysiol.00872.2004
29.
Gijsen
,
F.
,
Migliavacca
,
F.
,
Schievano
,
S.
,
Socci
,
L.
,
Petrini
,
L.
,
Thury
,
A.
,
Wentzel
,
J.
,
van der Steen
,
A.
,
Serruys
,
P.
, and
Dubini
,
G.
,
2008
, “
Simulation of Stent Deployment in a Realistic Human Coronary Artery
,”
BioMed. Eng. OnLine
,
7
(23), pp.
1
–11.10.1186/1475-925X-7-23
30.
Nicoud
,
F.
,
Vernhet
,
H.
, and
Dauzat
,
M.
,
2005
, “
A Numerical Assessment of Wall Shear Stress Changes After Endovascular Stenting
,”
J. Biomech.
,
38
, pp.
2019
2027
.10.1016/j.jbiomech.2004.09.011
31.
Stergiopulos
,
N.
,
Tardy
,
Y.
, and
Meister
,
J.
,
1993
, “
Nonlinear Separation of Forward and Backward Running Waves in Elastic Conduits
,”
J. Biomech.
,
26
, pp.
201
209
.10.1016/0021-9290(93)90049-K
32.
Rogova
,
I.
,
1998
, “
Propagation d'Ondes en Hémodynamique Artérielle: Application a l’Évaluation Indirecte des Parametres Physiopathologiques
,” Ph.D. Thesis, Université Paris Diderot, Paris.
You do not currently have access to this content.