Computational tools are often needed to model the complex behavior of biological tissues and cells when they are represented as mixtures of multiple neutral or charged constituents. This study presents the formulation of a finite element modeling framework for describing multiphasic materials in the open-source finite element software febio.1 Multiphasic materials may consist of a charged porous solid matrix, a solvent, and any number of neutral or charged solutes. This formulation proposes novel approaches for addressing several challenges posed by the finite element analysis of such complex materials: The exclusion of solutes from a fraction of the pore space due to steric volume and short-range electrostatic effects is modeled by a solubility factor, whose dependence on solid matrix deformation and solute concentrations may be described by user-defined constitutive relations. These solute exclusion mechanisms combine with long-range electrostatic interactions into a partition coefficient for each solute whose value is dependent upon the evaluation of the electric potential from the electroneutrality condition. It is shown that this electroneutrality condition reduces to a polynomial equation with only one valid root for the electric potential, regardless of the number and valence of charged solutes in the mixture. The equation of charge conservation is enforced as a constraint within the equation of mass balance for each solute, producing a natural boundary condition for solute fluxes that facilitates the prescription of electric current density on a boundary. It is also shown that electrical grounding is necessary to produce numerical stability in analyses where all the boundaries of a multiphasic material are impermeable to ions. Several verification problems are presented that demonstrate the ability of the code to reproduce known or newly derived solutions: (1) the Kedem–Katchalsky model for osmotic loading of a cell; (2) Donnan osmotic swelling of a charged hydrated tissue; and (3) current flow in an electrolyte. Furthermore, the code is used to generate novel theoretical predictions of known experimental findings in biological tissues: (1) current-generated stress in articular cartilage and (2) the influence of salt cation charge number on the cartilage creep response. This generalized finite element framework for multiphasic materials makes it possible to model the mechanoelectrochemical behavior of biological tissues and cells and sets the stage for the future analysis of reactive mixtures to account for growth and remodeling.

References

References
1.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
,
The Classical Field Theories
, (Handbuch der Physik), Vol.
III/1
,
Springer
,
Heidelberg
.
2.
Bowen
,
R.
,
1976
,
Theory of Mixtures
, (Continuum Physics), Vol.
3
,
Academic
,
New York
.
3.
Kenyon
,
D. E.
,
1976
, “
Transient Filtration in a Porous Elastic Cylinder
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
594
598
.10.1115/1.3423938
4.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
5.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.10.1115/1.3138475
6.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
7.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
8.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.10.1016/S0020-7225(96)00119-X
9.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
(
6
), pp.
709
723
.10.1016/0021-9290(93)90034-C
10.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1997
, “
A Triphasic Analysis of Negative Osmotic Flows Through Charged Hydrated Soft Tissues
,”
J. Biomech.
,
30
(
1
), pp.
71
78
.10.1016/S0021-9290(96)00099-1
11.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
,
2000
, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
336
346
.10.1115/1.1286316
12.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
2004
, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
6
16
.10.1115/1.1644562
13.
Lu
,
X. L.
,
Sun
,
D. D. N.
,
Guo
,
X. E.
,
Chen
,
F. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
2004
, “
Indentation Determined Mechanoelectrochemical Properties and Fixed Charge Density of Articular Cartilage
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
370
379
.10.1023/B:ABME.0000017534.06921.24
14.
Wan
,
L. Q.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2010
, “
A Triphasic Orthotropic Laminate Model for Cartilage Curling Behavior: Fixed Charge Density Versus Mechanical Properties Inhomogeneity
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
024504
.10.1115/1.4000942
15.
Likhitpanichkul
,
M.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2005
, “
The Effect of Matrix Tension-Compression Nonlinearity and Fixed Negative Charges on Chondrocyte Responses in Cartilage
,”
Mol. Cell Biomech.
,
2
(
4
), pp.
191
204
.10.3970/mcb.2005.002.191
16.
Haider
,
M. A.
,
Schugart
,
R. C.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2006
, “
A Mechano-Chemical Model for the Passive Swelling Response of an Isolated Chondron Under Osmotic Loading
,”
Biomech. Model. Mechanobiol.
,
5
(
2-3
), pp.
160
171
.10.1007/s10237-006-0026-1
17.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
,
35
(
15
), pp.
1419
1429
.10.1016/S0020-7225(97)00047-5
18.
Huyghe
,
J. M.
,
Houben
,
G. B.
,
Drost
,
M. R.
, and
van Donkelaar
,
C. C.
,
2004
, “
An Ionised/Nonionised Dual Porosity Model of Intervertebral Disc Tissue: Experimental Quantification of Parameters
,”
Biomech. Model. Mechanobiol.
,
2
(
4
), pp.
3
19
.10.1007/s10237-002-0023-y
19.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2008
, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
3
), pp.
H1197
H1205
.10.1152/ajpheart.01027.2007
20.
Bryant
,
M. R.
, and
McDonnell
,
P. J.
,
1998
, “
A Triphasic Analysis of Corneal Swelling and Hydration Control
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
370
381
.10.1115/1.2798004
21.
Elkin
,
B. S.
,
Shaik
,
M. A.
, and
Morrison
,
B.
, 3rd
,
2010
, “
Fixed Negative Charge and the Donnan Effect: A Description of the Driving Forces Associated With Brain Tissue Swelling and Oedema
,”
Philos. Trans. R. Soc. London
,
368
(
1912
), pp.
585
603
.10.1098/rsta.2009.0223
22.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
,
2006
, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
,
39
(
3
), pp.
464
475
.10.1016/j.jbiomech.2004.12.013
23.
Albro
,
M. B.
,
Chahine
,
N. O.
,
Caligaris
,
M.
,
Wei
,
V. I.
,
Likhitpanichkul
,
M.
,
Ng
,
K. W.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2007
, “
Osmotic Loading of Spherical Gels: A Biomimetic Study of Hindered Transport in the Cell Protoplasm
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
503
510
.10.1115/1.2746371
24.
Albro
,
M. B.
,
Petersen
,
L. E.
,
Li
,
R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Influence of the Partitioning of Osmolytes by the Cytoplasm on the Passive Response of Cells to Osmotic Loading
,”
Biophys. J.
,
97
(
11
), pp.
2886
2893
.10.1016/j.bpj.2009.09.011
25.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
26.
Albro
,
M. B.
,
Li
,
R.
,
Banerjee
,
R. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2010
, “
Validation of Theoretical Framework Explaining Active Solute Uptake in Dynamically Loaded Porous Media
,”
J. Biomech.
,
43
(
12
), pp.
2267
2273
.10.1016/j.jbiomech.2010.04.041
27.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
28.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1990
, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
138
146
.10.1115/1.2891164
29.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1992
, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
,
114
(
2
), pp.
191
201
.10.1115/1.2891371
30.
Suh
,
J. K.
, and
Spilker
,
R. L.
,
1994
, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
1
9
.10.1115/1.2895700
31.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
1
), pp.
25
46
.10.1080/01495739708936693
32.
Biot
,
M.
,
1941
, “
General Theory of 3-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.10.1063/1.1712886
33.
Bowen
,
R.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
(
9
), pp.
1129
1148
.10.1016/0020-7225(80)90114-7
34.
Mow
,
V. C.
, and
Lai
,
W. M.
,
1980
, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
,
22
(
3
), pp.
275
317
.10.1137/1022056
35.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
,
1996
, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
1
9
.10.1115/1.2795941
36.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7
37.
Kaasschieter
,
E. F.
,
Frijns
,
A. J. H.
, and
Huyghe
,
J. M.
,
2003
, “
Mixed Finite Element Modelling of Cartilaginous Tissues
,”
Math. Comput. Simul.
,
61
(
3-6
), pp.
549
560
.10.1016/S0378-4754(02)00105-2
38.
Yao
,
H.
, and
Gu
,
W. Y.
,
2007
, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
,
40
(
9
), pp.
2071
2077
.10.1016/j.jbiomech.2006.10.001
39.
Magnier
,
C.
,
Boiron
,
O.
,
Wendling-Mansuy
,
S.
,
Chabrand
,
P.
, and
Deplano
,
V.
,
2009
, “
Nutrient Distribution and Metabolism in the Intervertebral Disc in the Unloaded State: A Parametric Study
,”
J. Biomech.
,
42
(
2
), pp.
100
108
.10.1016/j.jbiomech.2008.10.034
40.
van Loon
,
R.
,
Huyghe
,
J. M.
,
Wijlaars
,
M. W.
, and
Baaijens
,
F. P. T.
,
2003
, “
3D FE Implementation of an Incompressible Quadriphasic Mixture Model
,”
Int. J. Numer. Methods Eng.
,
57
(
9
), pp.
1243
1258
.10.1002/nme.723
41.
Wu
,
J. Z.
, and
Herzog
,
W.
,
2002
, “
Simulating the Swelling and Deformation Behaviour in Soft Tissues Using a Convective Thermal Analogy
,”
Biomed. Eng. Online
,
1
, p.
8
.10.1186/1475-925X-1-8
42.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.10.1115/1.3118773
43.
Sengers
,
B. G.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
,
2004
, “
An Integrated Finite-Element Approach to Mechanics, Transport and Biosynthesis in Tissue Engineering
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
82
91
.10.1115/1.1645526
44.
Steck
,
R.
,
Niederer
,
P.
, and
Knothe Tate
,
M. L.
,
2003
, “
A Finite Element Analysis for the Prediction of Load-Induced Fluid Flow and Mechanochemical Transduction in Bone
,”
J. Theor. Biol.
,
220
(
2
), pp.
249
259
.10.1006/jtbi.2003.3163
45.
Zhang
,
L.
, and
Szeri
,
A.
,
2005
, “
Transport of Neutral Solute in Articular Cartilage: Effects of Loading and Particle Size
,”
Proc. R. Soc. London, Ser. A
,
461
(
2059
), pp.
2021
2042
.10.1098/rspa.2005.1461
46.
Deen
,
W. M.
,
1987
, “
Hindered Transport of Large Molecules in Liquid-Filled Pores
,”
AIChE J.
,
33
(
9
), pp.
1409
1425
.10.1002/aic.690330902
47.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.10.1115/1.4004810
48.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
49.
Albro
,
M. B.
,
Banerjee
,
R. E.
,
Li
,
R.
,
Oungoulian
,
S. R.
,
Chen
,
B.
,
Del Palomar
,
A. P.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2011
, “
Dynamic Loading of Immature Epiphyseal Cartilage Pumps Nutrients Out of Vascular Canals
,”
J. Biomech.
,
44
, pp.
1654
1659
.10.1016/j.jbiomech.2011.03.026
50.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2013
, “
Finite Element Modeling of Solutes in Hydrated Deformable Biological Tissues
,”
Computer Models in Biomechanics: From Nano to Macro
,
G. A.
Holzapfel
and
E.
Kuhl
, eds.,
Springer
,
New York
.
51.
Katzir-Katchalsky
,
A.
, and
Curran
,
P. F.
,
1965
,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University
,
Cambridge, England
.
52.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
53.
McNaught
,
A. D.
, and
Wilkinson
,
A.
,
1997
,
Compendium of Chemical Terminology: IUPAC Recommendations
,
2nd ed.
,
Blackwell Science
,
Oxford
.
54.
Ogston
,
A. G.
, and
Phelps
,
C. F.
,
1961
, “
The Partition of Solutes Between Buffer Solutions and Solutions Containing Hyaluronic Acid
,”
Biochem. J.
,
78
, pp.
827
833
.
55.
Laurent
,
T. C.
, and
Killander
,
J.
,
1963
, “
A Theory of Gel Filtration and Its Experimental Verification
,”
J. Chromatogr.
,
14
, pp.
317
330
.10.1016/S0021-9673(00)86637-6
56.
Tinoco
,
I.
,
Sauer
,
K.
, and
Wang
,
J. C.
,
1995
,
Physical Chemistry: Principles and Applications in Biological Sciences
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
57.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University
,
Cambridge, England
.
58.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2010
, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.10.1115/1.4001034
59.
Kedem
,
O.
, and
Katchalsky
,
A.
,
1958
, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-electrolytes
,”
Biochim. Biophys. Acta
,
27
(
2
), pp.
229
246
.10.1016/0006-3002(58)90330-5
60.
Overbeek
,
J. T.
,
1956
, “
The Donnan Equilibrium
,”
Prog. Biophys. Biophys. Chem.
,
6
, pp.
57
84
.
61.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics–I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
(
6
), pp.
615
627
.10.1016/0021-9290(87)90282-X
62.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics–II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
(
6
), pp.
629
639
.10.1016/0021-9290(87)90283-1
63.
Sokoloff
,
L.
,
1963
, “
Elasticity of Articular Cartilage: Effect of Ions and Viscous Solutions
,”
Science
,
141
, pp.
1055
1057
.10.1126/science.141.3585.1055
64.
Canal Guterl
,
C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2010
, “
Electrostatic and Non-Electrostatic Contributions of Proteoglycans to the Compressive Equilibrium Modulus of Bovine Articular Cartilage
,”
J. Biomech.
,
43
(
7
), pp.
1343
1350
.10.1016/j.jbiomech.2010.01.021
65.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans Faraday Soc.
,
57
, pp.
829
838
.10.1039/tf9615700829
66.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1991
, “
Quasi-incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
3
), pp.
273
310
.10.1016/0045-7825(91)90100-K
67.
Maroudas
,
A.
,
1979
,
Physicochemical Properties of Articular Cartilage
,
2nd ed.
,
Pitman Medical
,
Kent
, pp.
215
290
.
68.
Maroudas
,
A.
, and
Bannon
,
C.
,
1981
, “
Measurement of Swelling Pressure in Cartilage and Comparison With the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
,
18
(
3-6
), pp.
619
632
.
69.
Ehrlich
,
S.
,
Wolff
,
N.
,
Schneiderman
,
R.
,
Maroudas
,
A.
,
Parker
,
K. H.
, and
Winlove
,
C. P.
,
1998
, “
The Osmotic Pressure of Chondroitin Sulphate Solutions: Experimental Measurements and Theoretical Analysis
,”
Biorheology
,
35
(
6
), pp.
383
397
.10.1016/S0006-355X(99)80018-3
70.
Chahine
,
N. O.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2005
, “
Direct Measurement of Osmotic Pressure of Glycosaminoglycan Solutions by Membrane Osmometry at Room Temperature
,”
Biophys. J.
,
89
(
3
), pp.
1543
1550
.10.1529/biophysj.104.057315
71.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
179
192
.10.1115/1.2796000
72.
Maroudas
,
A.
,
Wachtel
,
E.
,
Grushko
,
G.
,
Katz
,
E. P.
, and
Weinberg
,
P.
,
1991
, “
The Effect of Osmotic and Mechanical Pressures on Water Partitioning in Articular Cartilage
,”
Biochim. Biophys. Acta
,
1073
(
2
), pp.
285
94
.10.1016/0304-4165(91)90133-2
73.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
,
2007
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
,
6
(
1-2
), pp.
43
53
.10.1007/s10237-006-0044-z
74.
Shklyar
,
T. F.
,
Dinislamova
,
O. A.
,
Safronov
,
A. P.
, and
Blyakhman
,
F. A.
,
2012
, “
Effect of Cytoskeletal Elastic Properties on the Mechanoelectrical Transduction in Excitable Cells
,”
J. Biomech.
,
45
(
8
), pp.
1444
1449
.10.1016/j.jbiomech.2012.02.017
75.
Bowen
,
R. M.
,
1968
, “
Thermochemistry of Reacting Materials
,”
J. Chem. Phys.
,
49
(
4
), pp.
1625
1637
.10.1063/1.1670288
76.
Ateshian
,
G. A.
,
Costa
,
K. D.
,
Azeloglu
,
E. U.
,
Morrison
,
B., R.
, and
Hung
,
C. T.
,
2009
, “
Continuum Modeling of Biological Tissue Growth by Cell Division, and Alteration of Intracellular Osmolytes and Extracellular Fixed Charge Density
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101001
.10.1115/1.3192138
77.
Ateshian
,
G. A.
,
2011
, “
The Role of Mass Balance Equations in Growth Mechanics Illustrated in Surface and Volume Dissolutions
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
011010
.10.1115/1.4003133
You do not currently have access to this content.