The liver is one of the most frequently injured organs in abdominal trauma. Although motor vehicle collisions are the most common cause of liver injuries, current anthropomorphic test devices are not equipped to predict the risk of sustaining abdominal organ injuries. Consequently, researchers rely on finite element models to assess the potential risk of injury to abdominal organs such as the liver. These models must be validated based on appropriate biomechanical data in order to accurately assess injury risk. This study presents a total of 36 uniaxial unconfined compression tests performed on fresh human liver parenchyma within 48 h of death. Each specimen was tested once to failure at one of four loading rates (0.012, 0.106, 1.036, and 10.708 s−1) in order to investigate the effects of loading rate on the compressive failure properties of human liver parenchyma. The results of this study showed that the response of human liver parenchyma is both nonlinear and rate dependent. Specifically, failure stress significantly increased with increased loading rate, while failure strain significantly decreased with increased loading rate. The failure stress and failure strain for all liver parenchyma specimens ranged from −38.9 kPa to −145.9 kPa and from −0.48 strain to −1.15 strain, respectively. Overall, this study provides novel biomechanical data that can be used in the development of rate dependent material models and the identification of tissue-level tolerance values, which are critical to the validation of finite element models used to assess injury risk.

References

References
1.
Cox
,
E.
,
1984
, “
Blunt Abdominal Trauma: A 5-Year Analysis of 870 Patients Requiring Celiotomy
,”
Ann. Surg.
,
199
(
4
), pp.
467
474
.10.1097/00000658-198404000-00015
2.
Clancey
,
T. V.
,
Maxwell
,
G.
,
Covington
,
D. L.
,
Brinker
,
C.
, and
Blackman
,
D.
,
2001
, “
A Statewide Analysis of Level I and II Trauma Centers for Patients With Major Injuries
,”
J. Trauma
,
51
, pp.
346
351
.10.1097/00005373-200108000-00021
3.
Miller
,
P. R.
,
Croce
,
M. A.
,
Bee
,
T. K.
,
Malhotra
,
A. K.
, and
Fabian
,
T. C.
,
2002
, “
Associated Injuries in Blunt Solid Organ Trauma: Implications for Missed Injury in Nonoperative Management
,”
J. Trauma
,
53
(
2
), pp.
238
242
.10.1097/00005373-200208000-00008
4.
Matthes
,
G.
,
Stengel
,
D.
,
Seifert
,
J.
,
Rademacher
,
G.
,
Mutze
,
S.
, and
Ekkernkamp
,
A.
,
2003
, “
Blunt Liver Injuries in Polytrauma: Results From a Cohort Study With the Regular Use of Whole Body Helical Computed Tomography
,”
World J. Surg.
,
27
, pp.
1124
1130
.10.1007/s00268-003-6981-0
5.
Ahmed
,
N.
and
Vernick
,
J. J.
,
2011
, “
Management of Liver Trauma in Adults
,”
J. Emerg. Trauma Shock.
,
4
, pp.
114
119
.10.4103/0974-2700.76846
6.
Fabian
,
T.
, and
Bee
,
T.
,
2003
, “
Liver and Biliary Tract Trauma
,”
Trauma
,
5th ed.
,
E. E.
Moore
,
D. V.
Feliciano
, and
K. L.
Mattox
, eds.
McGraw-Hill
;
New York
, pp.
637
662
.
7.
Malaki
,
M.
, and
Mangat
,
K.
,
2011
, “
Hepatic and Splenic Trauma
,”
Trauma
,
13
(
3
), pp.
233
244
.10.1177/1460408611400972
8.
Christmas
,
A.
,
Wilson
,
A.
,
Manning
,
B.
,
Franklin
,
G.
,
Miller
,
F.
,
Richardson
,
J.,
and
Rodriquez
,
J.
,
2005
, “
Selective Management of Blunt Hepatic Injuries Including Nonoperative Management is a Safe and Effective Strategy
,”
Surgery
,
138
(
4
), pp.
606
610
.10.1016/j.surg.2005.07.018
9.
Malhotra
,
A. K.
,
Fabian
,
T. C.
,
Croce
,
M. A.
,
Gavin
,
T. J.
,
Kudsk
,
K. A.
,
Minard
,
G.
, and
Pritchard
,
F. E.
,
2000
, “
Blunt Hepatic Injury: A Paradigm Shift From Operative to Nonoperative Management in the 1990s
,”
Ann. Surg.
,
231
(
6
), pp.
804
813
.10.1097/00000658-200006000-00004
10.
Hurtuk
,
M.
,
Reed
,
R.
,
Esposito
,
T.
,
Davis
,
K.
, and
Luchette
,
F.
,
2006
, “
Trauma Surgeons. Practice What They Preach: The NTDB Story on Solid Organ Injury Management
,”
J. Trauma
,
61
(
2
), pp.
243
255
.10.1097/01.ta.0000231353.06095.8d
11.
Ochiai
,
T.
,
Igari
,
K.
,
Yagi
,
M.
,
Ito
,
H.
,
Kumagai
,
Y.
,
Iida
,
M.
,
Matsumoto
,
A.
,
Kumada
,
Y.
,
Shinohara
,
K.
, and
Yamazaki
,
S.
,
2001
, “
Treatment Strategy for Blunt Hepatic Trauma: Analysis of 183 Consecutive Cases
,”
Hepato-gastroenterology
,
58
(
109
), pp.
1312
1315
.10.5754/hge11042
12.
Cuff
,
R. C.
,
Cogbill
,
T. H.
, and
Lambert
,
P. J.
,
2000
, “
Nonoperative Management of Blunt Liver Trauma: The Value of Follow-Up Abdominal Computed Tomography Scans
,”
Am. Surg.
,
66
(
4
), pp.
332
336
.
13.
Coughlin
,
P. A.
,
Stringer
,
M. D.
,
Lodge
,
J. P.
,
Pollard
,
S. G.
,
Prasad
,
K. R.
, and
Toogood
,
G. J.
,
2004
, “
Management of Blunt Liver Trauma in a Tertiary Referral Centre
,”
Br. J. Surg.
,
91
(
3
), pp.
317
321
.10.1002/bjs.4410
14.
Holbrook
,
T.
,
Hoyt
,
D.
,
Eastman
,
A.
,
Sise
,
M.
,
Kennedy
,
F.
,
Velky
,
T.
,
Conroy
,
C.
,
Pacyna
,
S.
, and
Erwin
,
S.
,
2007
, “
The Impact of Safety Belt Use on Liver Injuries in Motor Vehicle Crashes: The Importance of Motor Vehicle Safety Restraint Systems
,”
J. Trauma
,
23
(
2
), pp.
300
306
.10.1097/TA.0b013e318074de05
15.
Eppinger
,
R.
,
Sun
,
E.
,
Bandak
,
F.
,
Haffner
,
M.
,
Khaewpong
,
N.
,
Maltese
,
M.
,
Kuppa
,
S.
,
Nguyen
,
T.
,
Takhounts
,
E.
,
Tannous
,
R.
,
Zhang
,
A.
, and
Saul
,
R.
,
1999
, “
Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems – II
,” NHTSA Docket No. 1999-6407-5.
16.
Eppinger
,
R.
,
Sun
,
E.
,
Kuppa
,
S.
, and
Saul
,
R.
,
2000
, “
Supplement: Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems II
,” NHTSA Docket No. NHTSA-2000-7013-3.
17.
Laituri
,
T.
,
Prasad
,
P.
,
Sullivan
,
K.
,
Frankstein
,
M.
, and
Thomas
,
R.
,
2005
, “
Derivation and Evaluation of a Provisional, Age Dependent AIS 3+ Thoracic Risk Curve for Belted Adults in Frontal Impacts
,” SAE Paper No. 2005-01-0297.
18.
Kuppa
,
S.
,
2006
, “
Injury Criteria for Side Impact Dummies
,” I. I. NHTSA Docket No. NHTSA-2007-291340001.
19.
Cormier
,
J.
,
Manoogian
,
S. J.
,
Bisplinghoff
,
J.
,
Rowson
,
S.
,
Santago
,
A.
,
McNally
,
C.
,
Duma
,
S. M.
, and
Bolte
,
J.
,
2011
, “
The Tolerance of the Frontal Bone to Blunt Impact
,”
ASME J. Biomech. Eng.
,
133
, p.
021004
.10.1115/1.4003312
20.
Funk
,
J. R.
,
Rowson
,
S.
,
Daniel
,
R. W.
, and
Duma
,
S. M.
,
2012
, “
Validation of Concussion Risk Curves for Collegiate Football Players Derived From Hits Data
Ann. Biomed. Eng.
,
40
(
1
), pp.
79
89
.10.1007/s10439-011-0400-8
21.
Rowson
,
S.
,
Duma
,
S. M.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Greenwald
,
R. M.
,
Crisco
,
J. J.
,
Brolinson
,
P.
,
Duhaime
,
G.
,
McAllister
,
A. C.
, and
Maerlender
,
T. W. A. C.
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.10.1007/s10439-011-0392-4
22.
Augenstein
,
J.
,
Bowen
,
J.
,
Perdeck
,
E.
,
Singer
,
M.
,
Stratton
,
J.
,
Horton
,
T.
,
Rao
,
A.
,
Digges
,
K. H.
,
Malliaris
,
A. C.
, and
Steps
,
J.
,
2000
, “
Injury Patterns in Near-Side Collisions
,” SAE 2000 World Congress: SAE International.
23.
Mackenzie
,
E.
, and
Fowler
,
C.
,
2003
, “
Epidemiology
,”
Trauma
,
5th ed.
,
E. E.
Moore
,
D. V.
Feliciano
, and
K. L.
Mattox
, eds.,
McGraw-Hill
,
New York
, pp.
21
39
.
24.
Klinich
,
K. D.
,
Flannagan
,
A. C.
,
Nicholson
,
K.
,
Scheider
,
L. W.
, and
Rupp
,
J. D.
,
2010
, “
Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes
,”
Stapp Car Crash J.
,
54
, pp.
73
91
.
25.
Moorcroft
,
D.
,
Duma
,
S. M.
,
Stitzel
,
J. D.
, and
Duma
,
G.
,
2003
, “
Computational Model of the Pregnant Occupant: Predicting the Risk of Injury in Automobile Crashes
,”
Am. J. Obstet. Gynecol.
,
189
(
2
), pp.
540
544
.10.1067/S0002-9378(03)00519-2
26.
Kimpara
,
H.
,
Lee
,
J. B.
,
Yang
,
K. H.
,
King
,
A. I.
,
Iwamoto
,
M.
,
Watanabe
,
I.
, and
Miki
,
K.
,
2005
, “
Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female
,”
Stapp Car Crash J.
,
49
, pp.
251
269
.
27.
Ruan
,
J. S.
,
El-Jawahri
,
R.
,
Barbat
,
S.
, and
Prasad
,
P.
,
2005
, “
Biomechanical Analysis of Human Abdominal Impact Responses and Injuries Through Finite Element Simulations of a Full Human Body Model
,”
Stapp Car Crash J.
,
49
, pp.
343
366
.
28.
Ruan
,
J. S.
,
E1-Jawahari
,
R.
,
Rouhana
,
S. R.
,
Barbat
,
S.
, and
Prasad
,
P.
,
2006
, “
Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to ISO-TR9790 Procedures
,”
Stapp Car Crash J.
,
50
, pp.
343
366
.
29.
Hayashi
,
S.
,
Yasuki
,
T.
, and
Kitagawa
,
Y.
,
2008
, “
Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model With Internal Organs
,”
Stapp Car Crash J.
,
52
, pp.
363
377
.
30.
Yeh
,
W.
,
Li
,
P.
,
Jeng
,
Y.
,
Hsu
,
H.
,
Kuo
,
P.
,
Li
,
M.
,
Yang
,
P.
, and
Lee
,
P.
,
2002
, “
Elastic Modulus of Human Liver and Correlation to Pathology
,”
Ultrasound Med. Biol
,
28
(
4
), pp.
467
474
.10.1016/S0301-5629(02)00489-1
31.
Tamura
,
A.
,
Omori
,
K.
,
Miki
,
K.
,
Lee
,
J.
,
Yang
,
K.
, and
King
,
A.
,
2002
, “
Mechanical Characterization of Porcine Abdominal Organs
,”
Stapp Car Crash J.
,
46
, pp.
55
69
.
32.
Nasseri
,
S.
,
Bilston
,
L.
, and
Tanner
,
R.
,
2003
, “
Lubricated Squeezing Flow: A Useful Method for Measuring the Viscoelastic Properties of Soft Tissue
,”
Biorheology
,
40
, pp.
545
551
.
33.
Chui
,
C.
,
Kobayashi
,
E.
,
Chen
,
X.
,
Hisada
,
T.
, and
Sakuma
,
I.
,
2007
, “
Transversely Isotropic Properties of Porcine Liver Tissue: Experiments and Constitutive Modeling
,”
Med. Biol. Eng. Comput.
,
45
, pp.
99
106
.10.1007/s11517-006-0137-y
34.
Roan
,
E.
, and
Vemaganti
,
K.
,
2007
, “
The Non-Linear Material Properties of Liver Tissue Determined From No-Slip Uniaxial Compression Experiments
,”
Trans. ASME
,
129
, pp.
450
456
.
35.
Gao
,
Z.
,
Lister
,
K.
, and
Desai
,
J.
,
2010
, “
Constitutive Modeling of Liver Tissue: Experiment and Theory
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
505
516
.10.1007/s10439-009-9812-0
36.
Pervin
,
F.
,
Chen
,
W.
, and
Weerasooriya
,
T.
,
2011
, “
Dynamic Compressive Response of Bovine Liver Tissues
,”
J. Mech. Behav. Biol. Mater.
,
4
(
10
), pp.
76
84
.10.1016/j.jmbbm.2010.09.007
37.
Kemper
,
A. R.
,
Santago
,
A. C.
,
Stitzel
,
J. D.
,
Sparks.
J. L.
, and
Duma
,
S. M.
,
2010
, “
Biomechanical Response of Human Liver in Tensile Loading
,”
Ann. Adv. Automot. Med.
,
54
, pp.
15
26
.
38.
Valtorta
,
D.
, and
Mazza
,
D.
,
2005
, “
Dynamic Measurement of Soft Tissue Viscoelastic Properties With a Torsional Resonator Device
,”
Med. Image Anal.
,
9
, pp.
481
490
.10.1016/j.media.2005.05.002
39.
Valtorta
,
D.
, and
Mazza
,
D.
,
2006
, “
Measurement of Rheological Properties of Soft Biological Tissue With a Novel Torsional Resonator Device
,”
Rheol. Acta
,
45
, pp.
677
692
.10.1007/s00397-005-0026-6
40.
Arbogast
,
K. B.
,
Thibault
,
K. L.
,
Pinheiro
,
B. S.
,
Winey
,
K. I.
, and
Margulies
,
S. S.
,
1997
, “
A High-Frequency Shear Device for Testing Soft Biological Tissues
,”
J. Biomech.
,
30
(
7
), pp.
757
759
.10.1016/S0021-9290(97)00023-7
41.
Liu
,
Z.
, and
Bilston
,
L. E.
,
2000
, “
On the Viscoelastic Character of Liver Tissue: Experiments and Modeling of the Linear Behavior
,”
Biorheology
,
37
, pp.
191
201
.
42.
Santago
,
A. C.
,
Kemper
,
A. R.
,
McNally
,
C.
,
Sparks
,
J. L.
, and
Duma
,
S. M.
,
2009
, “
Freezing Affects the Mechanical Properties of Bovine Liver
,”
Biomed. Sci. Instrum.
,
45
, pp.
24
29
.
43.
Kemper
,
A. R.
,
Santago
,
A. C.
,
Stitzel
,
J. D.
,
Sparks
,
J. L.
, and
Duma
,
S. M.
,
2012
, “
Biomechanical Response of Human Spleen in Tensile Loading
,”
J. Biomech.
,
45
(
2
), pp.
348
55
.10.1016/j.jbiomech.2011.10.022
44.
Kemper
,
A. R.
,
Stitzel
,
J. D.
,
McNally
,
C.
,
Gabler
,
H. C.
, and
Duma
,
S. M.
,
2009
, “
Biomechanical Response of the Human Clavicle: The Effects of Loading Direction on Bending Properties
,”
J. Appl. Biomech.
,
25
(
2
), pp.
165
174
.
45.
Sokolis
,
D.
,
Boudoulas
,
H.
, and
Karayannaaco
,
P.
,
2002
, “
Assessment of the Aortic Stress–Strain Relationship in Uniaxial Tension
,”
J. Biomech.
,
35
, pp.
1213
1223
.10.1016/S0021-9290(02)00073-8
46.
Manoogian
,
S. J.
,
Bisplinghoff
,
J. A.
,
McNally
,
C.
,
Kemper
,
A. R.
,
Santago
,
A. C.
, and
Duma
,
S. M.
,
2008
, “
Dynamic Properties of Human Placenta
,”
J. Biomech.
,
41
, pp.
3436
3440
.10.1016/j.jbiomech.2008.09.020
47.
Manoogian
,
S. J.
,
Bisplinghoff
,
J. A.
,
McNally
,
C.
,
Kemper
,
A. R.
,
Santago
,
A. C.
, and
Duma
,
S. M.
,
2009
, “
Effect of Strain Rate on the Tensile Material Properties of Human Placenta
,”
J. Biomed. Eng.
,
131
(
9
), p.
091008
10.1115/1.3194694.
48.
Lessley
,
D.
,
Crandall
,
J.
,
Shaw
,
G.
,
Kent
,
R.
, and
Funk
,
J.
,
2001
, “
A Normalization Technique for Developing Corridors from Individual Subject Responses
,”
SAE
Technical Paper 2004-01-0288, 2004.10.4271/2004-01-0288
49.
Liu
,
Z.
and
Bilston
,
L. E.
,
2002
, “
Large Deformation Shear Properties of Liver Tissue
,”
Biorheology
,
39
, pp.
735
742
.
50.
Hu
,
J.
,
Klinich
,
K. D.
,
Miller
,
C. S.
,
Nazmi
,
G.
,
Pearlman
,
M D.
,
Schneider
,
L. W.
, and
Rupp
,
J. D.
,
2009
, “
Quantifying Dynamic Mechanical Properties of Human Placenta Tissue Using Optimization Techniques With Specimen-Specific Finite Element Models
,”
J. Biomech.
,
42
, pp.
2528
2534
.10.1016/j.jbiomech.2009.07.003
51.
Weed
,
B. C.
,
Borazjani
,
A.
,
Patnaik
,
S. S.
,
Prabhu
,
R.
,
Horstemeyer
,
M. F.
,
Ryan
,
P. L.
,
Franz
,
T.
,
Williams
,
L. N.
, and
Liao
,
J.
,
2012
, “
Stress State and Strain Rate Dependence of the Human Placenta
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2255
2265
.10.1007/s10439-012-0588-2
52.
Farshad
,
M.
,
Barbezat
,
M.
,
Flüeler
,
P.
,
Schmidlin
,
F.
,
Graber
,
P.
, and
Niederer
,
P.
,
1999
, “
Material Characterization of the Pig Kidney in Relation With the Biomechanical Analysis of Renal Trauma
,”
J. Biomech.
,
32
(
4
), pp.
417
425
.10.1016/S0021-9290(98)00180-8
53.
Zhang
,
S.
,
1999
,
An Atlas of Histology
,
Springer-Verlag
,
New York
.
54.
Bacha
,
W.
, and
Bacha
,
L.
,
2000
,
Color Atlas of Veterinary Histology
,
2nd ed.
,
Lippincott
,
Williams and Wilkins, Baltimore
.
55.
Ross
,
M.
, and
Pawlina
,
W.
,
2006
,
Histology—A Text and Atlas With Correlated Cell and Molecular Biology
,
5th ed.
,
Lippincott
,
Williams and Wilkins, Baltimore
.
56.
Matthews
,
J.
, and
Martin
,
J.
,
1971
,
Atlas of Human Histology and Ultrastructure
,
Lea and Febiger
,
Philadelphia
.
57.
Eurell
,
J.
, and
Frappier
,
B.
,
2006
,
Dellmann's Textbook of Veterinary Histology
,
6th ed.
,
Blackwell
,
Ames
.
58.
Mazza
,
E.
,
Nava
,
A.
,
Hahnloser
,
D.
,
Jochum
,
W.
, and
Bajka
,
M.
,
2007
, “
The Mechanical Response of Human Liver and its Relation to Histology: An In Vivo Study
,”
Med. Image Anal.
,
11
, pp.
633
672
.10.1016/j.media.2007.06.010
59.
Chatelin
,
S.
,
Oudry
,
J.
,
Périchon
,
N.
,
Sandrin
,
L.
,
Allemann
,
P.
,
Soler
,
L.
, and
Willinger
R.
,
2011
, “
In Vivo Liver Tissue Mechanical Properties by Transient Elastography: Comparison With Dynamic Mechanical Analysis
,”
Biorheology
,
48
(
2
), pp.
75
88
.
60.
Ocal
,
S.
,
Ozcan
,
M. U.
,
Basdogan
,
I.
, and
Basdogan
,
C.
,
2010
, “
Effect of Preservation Period on the Viscoelastic Material Properties of Soft Tissues With Implications for Liver Transplantation
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
101007
.10.1115/1.4002489
61.
Lu
,
Y. C.
, and
Untaroiu
,
C. D.
,
2012
, “
Freezing and Decay Effects on Material Properties of Porcine Kidney and Liver
,”
Biomed. Sci. Instrum.
,
48
, pp.
275
281
.
You do not currently have access to this content.