Existing experimental data on the Poisson's ratio of nucleus pulposus (NP) tissue is limited. This study aims to determine whether the Poisson's ratio of NP tissue is strain-dependent, strain-rate-dependent, or varies with axial location in the disk. Thirty-two cylindrical plugs of bovine tail NP tissue were subjected to ramp-hold unconfined compression to 20% axial strain in 5% increments, at either 30 μm/s or 0.3 μm/s ramp speeds and the radial displacement determined using biaxial video extensometry. Following radial recoil, the true Poisson's ratio of the solid phase of NP tissue increased linearly with increasing strain and demonstrated strain-rate dependency. The latter finding suggests that the solid matrix undergoes stress relaxation during the test. For small strains, we suggest a Poisson's ratio of 0.125 to be used in biphasic models of the intervertebral disk.

References

References
1.
Raj
,
P. P.
,
2008
, “
Intervertebral Disc: Anatomy-Physiology-Pathophysiology-Treatment
,”
Pain Pract.
,
8
, pp.
18
44
.10.1111/j.1533-2500.2007.00171.x
2.
Heneghan
,
P.
, and
Riches
,
P. E.
,
2008
, “
The Strain-Dependent Osmotic Pressure and Stiffness of the Bovine Nucleus Pulposus Apportioned Into Ionic and Non-Ionic Contributors
,”
J. Biomech.
,
41
, pp.
2411
2416
.10.1016/j.jbiomech.2008.05.025
3.
Johannessen
,
W.
, and
Elliott
,
D. M.
,
2005
, “
Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression
,”
Spine
,
30
, pp.
724
729
.10.1097/01.brs.0000192236.92867.15
4.
Perie
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
,
2005
, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
,
38
, pp.
2164
2171
.10.1016/j.jbiomech.2004.10.002
5.
Meakin
,
J. R.
, and
Hukins
,
D. W. L.
,
2001
, “
Replacing the Nucleus Pulposus of the Intervertebral Disk: Prediction of Suitable Properties of a Replacement Material Using Finite Element Analysis
,”
J. Mater. Sci.: Mater. Med.
,
12
, pp.
207
213
.10.1023/A:1008954813910
6.
Kulak
,
R. F.
,
Belytschko
,
T. B.
,
Schultz
,
A. B.
, and
Galante
,
J. O.
,
1976
, “
Nonlinear Behavior of Human Intervertebral-Disk Under Axial Load
,”
J. Biomech.
,
9
, pp.
377
386
.10.1016/0021-9290(76)90115-9
7.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
,
2003
, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (Peace) Model
,”
ASME J. Biomech. Eng.
,
125
, pp.
12
24
.10.1115/1.1537190
8.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
,
1996
, “
The Effect of Fluid Loss on the Viscoelastic Behavior of the Lumbar Intervertebral Disc in Compression
,”
ASME J. Biomech. Eng.
,
120
(1), pp.
48
54
.10.1115/1.2834306
9.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
, pp.
1331
1339
.10.1016/0021-9290(96)00035-8
10.
Goel
,
V. K.
,
Kong
,
W.
,
Han
,
J. S.
,
Weinstein
,
J. N.
, and
Gilbertson
,
L. G.
,
1993
, “
A Combined Finite Element and Optimization Investigation of Lumbar Spine Mechanics With and Without Muscles
,”
Spine
,
18
, pp.
1531
1541
.
11.
Lee
,
C. K.
,
Kim
,
Y. E.
,
Lee
,
C. S.
,
Hong
,
Y. M.
,
Jung
,
J. M.
, and
Goel
,
V. K.
,
2000
, “
Impact Response of the Intervertebral Disc in a Finite-Element Model
,”
Spine
,
25
, pp.
2431
2439
.10.1097/00007632-200010010-00003
12.
Natarajan
,
R. N.
,
Ke
,
J. H.
, and
Andersson
,
G. B.
,
1994
, “
A Model to Study the Disc Degeneration Process
,”
Spine
,
19
, pp.
259
265
.10.1097/00007632-199402000-00001
13.
Cloyd
,
J. M.
,
Malhotra
,
N. R.
,
Weng
,
L.
,
Chen
,
W.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2007
, “
Material Properties in Unconfined Compression of Human Nucleus Pulposus, Injectable Hyaluronic Acid-Based Hydrogels and Tissue Engineering Scaffolds
,”
Eur. Spine J.
,
16
, pp.
1892
1898
.10.1007/s00586-007-0443-6
14.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(2), pp.
165
173
.10.1115/1.3138475
15.
Chegini
,
S.
, and
Ferguson
,
S. J.
,
2010
, “
Time and Depth Dependent Poisson's Ratio of Cartilage Explained by an Inhomogeneous Orthotropic Fiber Embedded Biphasic Model
,”
J. Biomech.
,
43
, pp.
1660
1666
.10.1016/j.jbiomech.2010.03.006
16.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkhunen
,
P.
,
Toyras
,
J.
, and
Jurvelin
,
J. S.
,
2006
, “
Collagen Network Primarily Controls Poisson's Ratio of Bovine Articular Cartilage in Compression
.
J. Orthop. Res.
24
, pp.
690
699
.10.1002/jor.20107
17.
Yu
,
j.
,
Winlove
,
P. C.
,
Roberts
,
S.
, and
Urban
,
J. P.
,
2002
, “
Elastic Fibre Organization in the Intervertebral Discs of the Bovine Tail
,”
J. Anat.
201
, pp.
465
475
.10.1046/j.1469-7580.2002.00111.x
18.
Mikawa
,
Y.
,
Hamagami
,
H.
,
Shikata
,
J.
, and
Yamamuro
,
T.
,
1986
, “
Elastin in the Human Intervertebral-Disk—A Histological and Biochemical-Study Comparing it With Elastin in the Human Yellow Ligament
,”
Arch. Orthop. Trauma Surg.
,
105
, pp.
343
349
.10.1007/BF00449940
19.
Recuerda
,
M.
,
Cote
,
S.-P.
,
Villemure
,
I.
, and
Perie
,
D.
,
2011
, “
Influence of Experimental Protocols on the Mechanical Properties of the Intervertebral Disc in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
133
(7), p.
071006
.10.1115/1.4004411
20.
Mow
,
V. C.
, and
Schoonbeck
,
J. M.
,
1984
, “
Contribution of Donnan Osmotic Pressure Towards the Biphasic Compressive Modulus of Articular Cartilage
,”
Trans. Orthop. Res. Soc.
,
9
, p.
262
.
21.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
, pp.
235
241
.10.1016/S0021-9290(96)00133-9
22.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2002
, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
,
35
, pp.
903
909
.10.1016/S0021-9290(02)00052-0
23.
Wang
,
C. C.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
,
36
, pp.
339
353
.10.1016/S0021-9290(02)00417-7
24.
Li
,
L. P.
, and
Herzog
,
W.
,
2004
, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
,
41
, pp.
181
194
.
25.
Suh
,
J. K.
, and
Disilvestro
,
M. R.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
,
66
, pp.
528
535
.10.1115/1.2791079
26.
Demers
,
C. N.
,
Antoniou
,
J.
, and
Mwale
,
F.
,
2004
, “
Value and Limitations of Using the Bovine Tail as a Model for the Human Lumbar Spine
,”
Spine
,
29
, pp.
2793
2799
.10.1097/01.brs.0000147744.74215.b0
27.
Perie
,
D.
,
Iatridis
,
J. C.
,
Demers
,
C. N.
,
Goswami
,
T.
,
Beaudoin
,
G.
,
Mwale
,
F.
, and
Antoniou
,
J.
,
2006
, “
Assessment of Compressive Modulus, Hydraulic Permeability and Matrix Content of Trypsin-Treated Nucleus Pulposus Using Quantitative MRI
,”
J. Biomech.
,
39
, pp.
1392
1400
.10.1016/j.jbiomech.2005.04.015
28.
Perie
,
D. S.
,
Maclean
,
J. J.
,
Owen
,
J. P.
, and
Iatridis
,
J. C.
,
2006
, “
Correlating Material Properties With Tissue Composition in Enzymatically Digested Bovine Annulus Fibrosus and Nucleus Pulposus Tissue
,”
Ann. Biomed. Eng.
,
34
, pp.
769
777
.10.1007/s10439-006-9091-y
You do not currently have access to this content.