Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.

References

References
1.
Deyo
,
R. A.
,
Gray
,
D. T.
,
Kreuter
,
W.
,
Mirza
,
S.
, and
Martin
,
B. I.
,
2005
, “
United States Trends in Lumbar Fusion Surgery for Degenerative Conditions
,”
Spine
,
30
(
12
), pp.
1441
1447
.10.1097/01.brs.0000166503.37969.8a
2.
Chen
,
N. F.
,
Smith
,
Z. A.
,
Stiner
,
E.
,
Armin
,
S.
,
Sheikh
,
H.
, and
Khoo
,
L. T.
,
2010
, “
Symptomatic Ectopic Bone Formation After Off-Label Use of Recombinant Human Bone Morphogenetic Protein-2 in Transforaminal Lumbar Interbody Fusion
,”
J. Neurosurg. Spine
,
12
(
1
), pp.
40
46
.10.3171/2009.4.SPINE0876
3.
McAfee
,
P. C.
,
1999
, “
Interbody Fusion Cages in Reconstructive Operations on the Spine
,”
J. Bone Joint. Surg. Am.
,
81
(
6
), pp.
859
880
.
4.
Kuslich
,
S. D.
,
Ulstrom
,
C. L.
,
Griffith
,
S. L.
,
Ahern
,
J. W.
, and
Dowdle
,
J. D.
,
1998
, “
The Bagby and Kuslich Method of Lumbar Interbody Fusion. History, Techniques, and 2-Year Follow-Up Results of a United States Prospective, Multicenter Trial
,”
Spine
,
23
(
11
), pp.
1267
1279
.10.1097/00007632-199806010-00019
5.
Whitecloud
,
T. S.
III
,
Castro
,
F. P.
Jr.
,
Brinker
,
M. R.
,
Hartzog
,
C. W.
Jr.
,
Ricciardi
,
J. E.
, and
Hill
,
C.
,
1998
, “
Degenerative Conditions of the Lumbar Spine Treated With Intervertebral Titanium Cages and Posterior Instrumentation for Circumferential Fusion
,”
J. Spinal Disord.
,
11
(
6
), pp.
479
486
.10.1097/00002517-199812000-00005
6.
Kanayama
,
M.
,
Cunningham
,
B. W.
,
Haggerty
,
C. J.
,
Abumi
,
K.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
,
2000
, “
In Vitro Biomechanical Investigation of the Stability and Stress-Shielding Effect of Lumbar Interbody Fusion Devices
,”
J. Neurosurg.
,
93
(
2 Suppl.
), pp.
259
265
.
7.
Smith
,
K. R.
,
Hunt
,
T. R.
,
Asher
,
M. A.
,
Anderson
,
H. C.
,
Carson
,
W. L.
, and
Robinson
,
R. G.
,
1991
, “
The Effect of a Stiff Spinal Implant on the Bone-Mineral Content of the Lumbar Spine in Dogs
,”
J. Bone Joint Surg. Am.
,
73
(
1
), pp.
115
123
.
8.
van Dijk
,
M.
,
Smit
,
T. H.
,
Sugihara
,
S.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2002
, “
The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An in Vivo Model Using Poly(l-Lactic Acid) and Titanium Cages
,”
Spine
,
27
(
7
), pp.
682
688
.10.1097/00007632-200204010-00003
9.
Cizek
,
G. R.
, and
Boyd
,
L. M.
,
2000
, “
Imaging Pitfalls of Interbody Spinal Implants
,”
Spine
,
25
(
20
), pp.
2633
2636
.10.1097/00007632-200010150-00015
10.
Robertson
,
D. D.
,
Sharma
,
G. B.
,
Gilbertson
,
L. G.
, and
Kang
,
J. D.
,
2009
, “
Bone Densitometry Within Titanium Lumbar Interbody Fusion Cages: A Computed Tomography Feasibility Study
,”
Spine
,
34
(
25
), pp.
2792
2796
.10.1097/BRS.0b013e3181b61e00
11.
van Dijk
,
M.
,
Smit
,
T. H.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2002
, “
Bioabsorbable Poly-L-Lactic Acid Cages for Lumbar Interbody Fusion: Three-Year Follow-Up Radiographic, Histologic, and Histomorphometric Analysis in Goats
,”
Spine
,
27
(
23
), pp.
2706
2714
.10.1097/00007632-200212010-00010
12.
van Dijk
,
M.
,
van Diest
,
P. J.
,
Smit
,
T. H.
,
Berkhof
,
H.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2005
, “
Four-Year Follow-Up of Poly-L-Lactic Acid Cages for Lumbar Interbody Fusion in Goats
,”
J. Long Term Eff. Med. Implants
,
15
(
2
), pp.
125
138
.10.1615/JLongTermEffMedImplants.v15.i2.20
13.
Smit
,
T. H.
,
Krijnen
,
M. R.
,
van Dijk
,
M.
, and
Wuisman
,
P. I.
,
2006
, “
Application of Polylactides in Spinal Cages: Studies in a Goat Model
,”
J. Mater. Sci. Mater. Med.
,
17
(
12
), pp.
1237
1244
.10.1007/s10856-006-0597-5
14.
Kandziora
,
F.
,
Pflugmacher
,
R.
,
Scholz
,
M.
,
Eindorf
,
T.
,
Schnake
,
K. J.
, and
Haas
,
N. P.
,
2004
, “
Bioabsorbable Interbody Cages in a Sheep Cervical Spine Fusion Model
,”
Spine
,
29
(
17
), pp.
1845
1856
.10.1097/01.brs.0000137060.79732.78
15.
Weiner
,
B. K.
, and
Fraser
,
R. D.
,
1998
, “
Spine Update Lumbar Interbody Cages
,”
Spine
,
23
(
5
), pp.
634
640
.10.1097/00007632-199803010-00020
16.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.10.1038/nmat1421
17.
Lin
,
C. Y.
,
Hsiao
,
C. C.
,
Chen
,
P. Q.
, and
Hollister
,
S. J.
,
2004
, “
Interbody Fusion Cage Design Using Integrated Global Layout and Local Microstructure Topology Optimization
,”
Spine
,
29
(
16
), pp.
1747
1754
.10.1097/01.BRS.0000134573.14150.1A
18.
Lin
,
C. Y.
,
Wirtz
,
T.
,
La Marca
,
F.
, and
Hollister
,
S. J.
,
2007
, “
Structural and Mechanical Evaluations of a Topology Optimized Titanium Interbody Fusion Cage Fabricated by Selective Laser Melting Process
,”
J. Biomed. Mater. Res. A
,
83
(
2
), pp.
272
279
.
19.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
,
2002
, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
,
23
(
20
), pp.
4095
4103
.10.1016/S0142-9612(02)00148-5
20.
Hollister
,
S. J.
,
Levy
,
R. A.
,
Chu
,
T. M.
,
Halloran
,
J. W.
, and
Feinberg
,
S. E.
,
2000
, “
An Image-Based Approach for Designing and Manufacturing Craniofacial Scaffolds
,”
Int. J. Oral Maxillofac. Surg.
,
29
(
1
), pp.
67
71
.10.1034/j.1399-0020.2000.290115.x
21.
Hutmacher
,
D. W.
,
2001
, “
Scaffold Design and Fabrication Technologies for Engineering Tissues–State of the Art and Future Perspectives
,”
J. Biomater. Sci. Polym. Ed.
,
12
(
1
), pp.
107
124
.10.1163/156856201744489
22.
Lin
,
C. Y.
,
Schek
,
R. M.
,
Mistry
,
A. S.
,
Shi
,
X.
,
Mikos
,
A. G.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
,
2005
, “
Functional Bone Engineering Using Ex Vivo Gene Therapy and Topology-Optimized, Biodegradable Polymer Composite Scaffolds
,”
Tissue Eng.
,
11
(
9–10
), pp.
1589
1598
.10.1089/ten.2005.11.1589
23.
Schek
,
R. M.
,
Taboas
,
J. M.
,
Hollister
,
S. J.
, and
Krebsbach
,
P. H.
,
2005
, “
Tissue Engineering Osteochondral Implants for Temporomandibular Joint Repair
,”
Orthod. Craniofac. Res.
,
8
(
4
), pp.
313
319
.10.1111/j.1601-6343.2005.00354.x
24.
Shiraziadl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
A Finite-Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.10.1016/0021-9290(86)90009-6
25.
Zhong
,
Z. C.
,
Wei
,
S. H.
,
Wang
,
J. P.
,
Feng
,
C. K.
,
Chen
,
C. S.
, and
Yu
,
C. H.
,
2006
, “
Finite Element Analysis of the Lumbar Spine With a New Cage Using a Topology Optimization Method
,”
Med. Eng. Phys.
,
28
(
1
), pp.
90
98
.10.1016/j.medengphy.2005.03.007
26.
Ekstrom
,
L.
,
Holm
,
S.
,
Holm
,
A. K.
, and
Hansson
,
T.
,
2004
, “
In Vivo Porcine Intradiscal Pressure as a Function of External Loading
,”
J. Spinal Disord. Tech.
,
17
(
4
), pp.
312
316
.10.1097/01.bsd.0000092068.78152.00
27.
Kang
,
H.
,
Lin
,
C.-Y.
, and
Hollister
,
S. J.
,
2010
, “
Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity
,”
Struct. Multidisc Optim.
,
42
, pp.
633
644
.10.1007/s00158-010-0508-8
28.
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1996
, “
Connection Between the Conductivity and Bulk Modulus of Isotropic Composite Materials
,”
Proc. R. Soc. Lond. A
,
452
(
1945
), pp.
253
283
.10.1098/rspa.1996.0015
29.
Nachemson
,
A.
,
1966
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
,
45
, pp.
107
122
.10.1097/00003086-196600450-00014
30.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
,
2005
, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering
,”
Biomaterials
,
26
(
23
), pp.
4817
4827
.10.1016/j.biomaterials.2004.11.057
31.
Goulet
,
R. W.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
,
Kuhn
,
J. L.
,
Brown
,
M. B.
, and
Feldkamp
,
L. A.
,
1994
, “
The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,”
J. Biomech.
,
27
(
4
), pp.
375
389
.10.1016/0021-9290(94)90014-0
32.
Ang
,
K. C.
,
Leong
,
K. F.
,
Chua
,
C. K.
, and
Chandrasekaran
,
M.
,
2007
, “
Compressive Properties and Degradability of Poly(Epsilon-Caprolactone)/Hydroxyapatite Composites Under Accelerated Hydrolytic Degradation
,”
J. Biomed. Mater. Res. Part A
,
80A
(
3
), pp.
655
660
.10.1002/jbm.a.30996
33.
Engelberg
,
I.
, and
Kohn
,
J.
,
1991
, “
Physico-Mechanical Properties of Degradable Polymers Used in Medical Applications: A Comparative Study
,”
Biomaterials
,
12
(
3
), pp.
292
304
.10.1016/0142-9612(91)90037-B
34.
Eshraghi
,
S.
, and
Das
,
S.
,
2010
, “
Mechanical and Microstructural Properties of Polycaprolactone Scaffolds With One-Dimensional, Two-Dimensional, and Three-Dimensional Orthogonally Oriented Porous Architectures Produced by Selective Laser Sintering
,”
Acta Biomater.
,
6
(
7
), pp.
2467
2476
.10.1016/j.actbio.2010.02.002
35.
Takahashi
,
I.
,
Kikuchi
,
S.
,
Sato
,
K.
, and
Sato
,
N.
,
2006
, “
Mechanical Load of the Lumbar Spine During Forward Bending Motion of the Trunk-a Biomechanical Study
,”
Spine
,
31
(
1
), pp.
18
23
.10.1097/01.brs.0000192636.69129.fb
36.
Schultz
,
A.
,
Andersson
,
G.
,
Ortengren
,
R.
,
Haderspeck
,
K.
, and
Nachemson
,
A.
,
1982
, “
Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Joint Surg. Am.
,
64
(
5
), pp.
713
720
.
37.
Shor
,
L.
,
Gueceri
,
S.
,
Gandhi
,
M.
,
Wen
,
X.
, and
Sun
,
W.
,
2008
, “
Solid Freeform Fabrication of Polycaprolactone/Hydroxyapatite Tissue Scaffolds
,”
ASME J. Manuf. Sci. E.-T.
,
130
(
2
), p.
021018
.10.1115/1.2898411
38.
Karageorgiou
,
V.
, and
Kaplan
,
D.
,
2005
, “
Porosity of 3D Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
,
26
(
27
), pp.
5474
5491
.10.1016/j.biomaterials.2005.02.002
39.
Roosa
,
S. M.
,
Kemppainen
,
J. M.
,
Moffitt
,
E. N.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
,
2010
, “
The Pore Size of Polycaprolactone Scaffolds Has Limited Influence on Bone Regeneration in an in Vivo Model
,”
J. Biomed. Mater. Res. A
,
92
(
1
), pp.
359
368
.
40.
Jiya
,
T.
,
Smit
,
T.
,
Deddens
,
J.
, and
Mullender
,
M.
,
1976
, “
Posterior Lumbar Interbody Fusion Using Nonresorbable Poly-Ether-Ether-Ketone Versus Resorbable Poly-L-Lactide-Co-D,L-Lactide Fusion Devices: A Prospective, Randomized Study to Assess Fusion and Clinical Outcome
,”
Spine
,
34
(
3
), pp.
233
237
.10.1097/BRS.0b013e318194ed00
41.
Karjalainen
,
T.
,
Hiljanen-Vainio
,
M.
,
Malin
,
M.
, and
Seppala
,
J.
,
1996
, “
Biodegradable Lactone Copolymers. III. Mechanical Properties of Epsilon-Caprolactone and Lactide Copolymers After Hydrolysis in Vitro
,”
J. Appl. Polym. Sci.
,
26
(
11
), pp.
3779
3787
.
42.
Pitt
,
C. G.
,
Chasalow
,
F. I.
,
Hibionada
,
Y. M.
,
Klimas
,
D. M.
, and
Schindler
,
A.
,
1981
, “
Aliphatic Polyesters. I. The Degradation of Poly(Epsilon-Caprolactone) in Vivo
,”
J. Appl. Polym. Sci.
,
26
(
11
), pp.
3779
3787
.10.1002/app.1981.070261124
43.
Smit
,
T. H.
,
Engels
,
T. A.
,
Wuisman
,
P. I.
, and
Govaert
,
L. E.
,
1976
, “
Time-Dependent Mechanical Strength of 70/30 Poly(L, DL-Lactide): Shedding Light on the Premature Failure of Degradable Spinal Cages
,”
Spine
,
33
(
1
), pp.
14
18
.10.1097/BRS.0b013e31815e39df
44.
Goel
,
V. K.
, and
Gilbertson
,
L. G.
,
1997
, “
Basic Science of Spinal Instrumentation
,”
Clin. Orthop. Relat. Res.
,
335
, pp.
10
31
.
45.
Lin
,
R. M.
,
Tsai
,
K. H.
, and
Chang
,
G. L.
,
1997
, “
Distribution and Regional Strength of Trabecular Bone in the Porcine Lumbar Spine
,”
Clin. Biomech.
,
12
(
5
), pp.
331
336
.10.1016/S0268-0033(97)00012-0
46.
Smit
,
T. H.
,
2002
, “
The Use of a Quadruped as an in Vivo Model for the Study of the Spine—Biomechanical Considerations
,”
Eur. Spine J.
,
11
(
2
), pp.
137
144
.10.1007/s005860100346
47.
Murphy
,
W. L.
,
Kohn
,
D. H.
, and
Mooney
,
D. J.
,
2000
, “
Growth of Continuous Bonelike Mineral Within Porous Poly(Lactide-Co-Glycolide) Scaffolds in Vitro
,”
J. Biomed. Mater. Res.
,
50
(
1
), pp.
50
58
.10.1002/(SICI)1097-4636(200004)50:1<50::AID-JBM8>3.0.CO;2-F
48.
Zhang
,
H.
,
Migneco
,
F.
,
Lin
,
C.-Y.
, and
Hollister
,
S. J.
,
2010
, “
Chemically-Conjugated Bone Morphogenetic Protein-2 on Three-Dimensional Polycaprolactone Scaffolds Stimulates Osteogenic Activity in Bone Marrow Stromal Cells
,”
Tissue Eng. Part A
,
16
, pp.
3441
3448
.10.1089/ten.tea.2010.0132
49.
van Dijk
,
M.
,
Smit
,
T. H.
,
Arnoe
,
M. F.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2003
, “
The Use of Poly-L-Lactic Acid in Lumbar Interbody Cages: Design and Biomechanical Evaluation in Vitro
,”
Eur. Spine J.
,
12
(
1
), pp.
34
40
.
You do not currently have access to this content.