Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to predictably tune and precisely manufacture orthoses with objectively customized fit and functional characteristics.

References

References
1.
Harlaar
,
J.
,
Brehm
,
M.
,
Becher
,
J. G.
,
Bregman
,
D. J. J.
,
Buurke
,
J.
, and
Holtkamp
,
F.
,
2010
, “
Studies Examining the Efficacy of Ankle Foot Orthoses Should Report Activity Level and Mechanical Evidence
,”
Prosthet. Orthot. Int.
,
34
(
3
), pp.
327
335
.10.3109/03093646.2010.504977
2.
Pomeranz
,
B.
,
2006
, “
Prosthetics and Orthotics for Older Adult With a Physical Disability
,”
Clin. Geriar. Med.
,
22
(
2
), pp.
377
394
.10.1016/j.cger.2005.12.006
3.
Esquenazi
,
A.
, and
Hirai
,
B.
,
1991
, “
Assessment of Gait and Orthotic Prescription
,”
Phys. Med. Rehabil. Clin. North Am.
,
2
(
3
), pp.
473
485
.
4.
Yamamoto
,
S.
,
Miyazaki
,
S.
, and
Kubota
,
T.
,
1993
, “
Quantification of the Effect of the Mechanical Property of Ankle-Foot Orthoses on Hemiplegic Gait
,”
Gait and Posture
,
1
, pp.
27
34
.10.1016/0966-6362(93)90040-8
5.
Davis
,
R. A.
, and
DeLuca
,
P. A.
,
1996
, “
Gait Characterization via Dynamic Joint Stiffness
,”
Gait and Posture
,
4
, pp.
224
231
.10.1016/0966-6362(95)01045-9
6.
Sumiya
,
T.
,
Suzuki
,
Y.
, and
Kasahara
,
T.
,
1996
, “
Stiffness Control in Posterior-Type Plastic Ankle-Foot Orthoses: Effect of Ankle Trimline Part 2: Orthosis Characteristics and Orthosis/Patient Matching
,”
Prosthet. Orthot. Int.
,
20
, pp.
132
137
.
7.
Cappa
,
P.
,
Patane
,
F.
, and
Pierro
,
M. M.
,
2003
, “
A Novel Device to Evaluate the Stiffness of Ankle-Foot Orthosis Devices
,”
ASME J. Biomech. Eng.
,
125
, pp.
913
917
.10.1115/1.1634993
8.
Major
,
R. E.
,
Hewart
,
P. J.
, and
Macdonald
,
A. M.
,
2004
, “
A New Structural Concept in Moulded Fixed Ankle Foot Orthoses and Comparison of the Bending Stiffness of Four Constructions
,”
Prosthet. Orthot. Int.
,
28
, pp.
44
48
.
9.
Bregman
,
D. J. J.
,
Van der Krogt
,
M. M.
,
De Groot
,
V.
,
Harlaar
,
J.
,
Wisse
,
M.
, and
Collins
,
S. H.
,
2011
, “
The Effect of Ankle Foot Orthosis Stiffness on the Energy Cost of Walking: A Simulation Study
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
9
), pp.
955
961
.10.1016/j.clinbiomech.2011.05.007
10.
Kobayashi
,
T.
,
Leung
,
A. K. L.
, and
Hutchins
,
S. W.
,
2011
, “
Techniques to Measure Rigidity of Ankle-Foot Orthosis: A Review
,”
J. Rehabil. Res. Dev.
,
48
(
5
), pp.
565
576
.10.1682/JRRD.2010.10.0193
11.
Convery
,
P.
,
Greig
,
R. J.
,
Ross
,
R. S.
, and
Sockalingam
,
S.
,
2004
, “
A Three Centre Study of the Variability of Ankle Foot Orthoses due to Fabrication and Grade of Polypropylene
,”
Prosthet. Orthot. Int.
,
28
(
2
), pp.
175
182
.10.1080/03093640408726702
12.
Condie
,
D. N.
,
2008
, “
The Modern Era of Orthotics
,”
Prosthet. Orthot. Int.
,
32
(
3
), pp.
313
323
.10.1080/03093640802113006
13.
Klapsing
,
G. M.
,
Marin
,
T. J.
, and
Parreño
,
E. M.
,
2010
, “
Applied Biomechanics: Footwear Industry
,”
J. Biomech.
,
43
, pp.
S26
S27
.
14.
Schrank
,
E. S.
, and
Stanhope
,
S. J.
,
2011
, “
Dimensional Accuracy of Ankle-Foot Orthoses Constructed by Rapid Customization and Manufacturing Framework
,”
J. Rehabil. Res. Dev.
,
48
(
1
), pp.
31
42
.10.1682/JRRD.2009.12.0195
15.
Goh
,
J. C. H.
,
Lee
,
P. V. S.
,
Toh
,
S. L.
, and
Ooi
,
C. K.
,
2005
, “
Development of an Integrated CAD-FEA Process for Below-Knee Prosthetic Sockets
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
6
), pp.
623
629
.10.1016/j.clinbiomech.2005.02.005
16.
Portnoy
,
S.
,
Yarnitzky
,
G.
,
Yizhar
,
Z.
,
Kristal
,
A.
,
Oppenheim
,
U.
,
Siev-Ner
,
I.
, and
Gefen
,
A.
,
2007
, “
Real-Time Patient-Specific Finite Element Analysis of Internal Stresses in the Soft Tissues of a Residual Limb: A New Tool For Prosthetic Fitting
,”
Ann. Biomed. Eng.
,
35
(
1
), pp.
120
135
.10.1007/s10439-006-9208-3
17.
Montgomery
,
J. T.
,
Vaughan
,
M. R.
, and
Crawford
,
R. H.
,
2010
, “
Design of an Actively Actuated Prosthetic Socket
,”
Rapid Prototyping J.
,
16
(
3
), pp.
194
201
.10.1108/13552541011034861
18.
Cheung
,
J. T.
, and
Zhang
,
M.
,
2005
, “
A 3-Dimensional Finite Element Model of the Human Foot and Ankle for Insole Design
,”
Arch. Phys. Med. Rehabil.
,
86
, pp.
353
358
.10.1016/j.apmr.2004.03.031
19.
Chu
,
T. M.
,
Reddy
,
N. P.
, and
Padovan
,
J.
,
1995
, “
Three-Dimensional Finite Element Stress Analysis of the Polypropylene, Ankle-Foot Orthosis: Static Analysis
,”
Med. Eng. Phys.
,
17
(
5
), pp.
372
379
.10.1016/1350-4533(95)97317-I
20.
Chu
,
T.-M.
, and
Reddy
,
N. P.
,
1995
, “
Stress Distribution in the Ankle-Foot Orthosis Used to Correct Pathological Gait
,”
J. Rehabil. Res. Dev.
,
32
(
4
), pp.
1
6
.
21.
Syngellakis
,
S.
,
Arnold
,
M. A.
, and
Rassoulian
,
H.
,
2000
, “
Assessment of the Non-Linear Behaviour of Plastic Ankle Foot Orthoses by the Finite Element Method
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
(
5
), pp.
527
539
.10.1243/0954411001535561
22.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
, and
Stanhope
,
S. J.
,
2008
, “
Manufacture of Passive Dynamic Ankle-Foot Orthoses Using Selective Laser Sintering.
,”
IEEE Trans. Biomed. Eng.
,
55
(
2 Pt 1
), pp.
784
790
.10.1109/TBME.2007.912638
23.
Tay
,
F. E. H.
,
Manna
,
M. A.
, and
Liu
,
L. X.
,
2002
, “
A CASD/CASM Method for Prosthetic Socket Fabrication Using the FDM Technology
,”
Rapid Prototyping J.
,
8
(
4
), pp.
258
262
.10.1108/13552540210441175
24.
Hsu
,
L.
,
Huang
,
G.
,
Lu
,
C.
,
Hong
,
D.
, and
Liu
,
S.
,
2010
, “
The Development of a Rapid Prototyping Prosthetic Socket Coated With a Resin Layer for Transtibial Amputees
,”
Prosthet. Orthot. Int.
,
34
(
1
), pp.
37
45
.10.3109/03093640902911820
25.
Dhakshyani
,
R.
,
Nukman
,
Y.
,
Abu Osman
N. A.
, and
Vijay
,
C.
,
2011
, “
Preliminary Report: Rapid Prototyping Models for Dysplastic Hip Surgery
,”
Cent. Eur. J. Med.
,
6
(
3
), pp.
266
270
.10.2478/s11536-011-0012-6
26.
Espalin
,
D.
,
Arcaute
,
K.
,
Rodriguez
,
D.
,
Medina
,
F.
,
Posner
,
M.
, and
Wicker
,
R.
,
2010
, “
Fused Deposition Modeling of Patient-Specific Polymethylmethacrylate Implants
,”
Rapid Prototyping J.
,
16
(
3
), pp.
164
173
.10.1108/13552541011034825
27.
Hanssen
,
J.
,
2009
, “
FORTUS 900mc Accuracy Study
,” Stratasys, Eden Prairie, MN, pp.
1
3
.
28.
Bellini
,
A.
, and
Güçeri
,
S.
,
2003
, “
Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,”
Rapid Prototyping J.
,
9
(
4
), pp.
252
264
.10.1108/13552540310489631
29.
Kim
,
G. D.
, and
Oh
,
Y. T.
,
2008
, “
A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost
,”
Proc. Inst. Mech. Eng., Part B
,
222
(
2
), pp.
201
215
.10.1243/09544054JEM724
30.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2010
, “
Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts
,”
Mater. Des.
,
31
(
1
), pp.
287
295
.10.1016/j.matdes.2009.06.016
31.
Smith
,
D. G.
, and
Burgess
,
E. M.
,
2001
, “
The Use of CAD/CAM Technology in Prosthetics and Orthotics–Current Clinical Models and a View to the Future
,”
J. Rehabil. Res. Dev.
,
38
(
3
), pp.
327
334
.
32.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
.10.1109/TBME.2010.2044178
33.
Takahashi
,
K.
, and
Stanhope
,
S. J.
,
2010
, “
Estimates of Stiffness for Ankle-Foot Orthoses are Sensitive to Loading Condtions
,”
J. Prosthet. Orthot.
,
22
(
4
), pp.
211
219
.10.1097/JPO.0b013e3181f46822
34.
Perry
,
J.
, and
Burnfield
,
J. M.
,
2010
, “
Gait Analysis: Normal and Pathological Function
,” SLACK Inc., Thorofare, NJ.
35.
Razzook
,
A. R.
,
Takahashi
,
K.
,
Guinn
,
L. D.
,
Schrank
,
E. S.
, and
Stanhope
,
S. J.
,
2011
, “
A Predictive Model for Natural Ankle Stiffness During Walking: Implications for Ankle Foot Orthosis Prescription
,”
Proceedings of Gait and Clinical Movement Analysis Society
,
Bethesda, MD
.
You do not currently have access to this content.