Experimental results presented in the literature suggest that humans use a position control strategy to indirectly control force rather than direct force control. Modeling the muscle-tendon system as a third-order linear model, we provide an explanation of why an indirect force control strategy is preferred. We analyzed a third-order muscle system and verified that it is required for a faithful representation of muscle-tendon mechanics, especially when investigating critical damping conditions. We provided numerical examples using biomechanical properties of muscles and tendons reported in the literature. We demonstrated that at maximum isotonic contraction, for muscle and tendon stiffness within physiologically compatible ranges, a third-order muscle-tendon system can be under-damped. Over-damping occurs for values of the damping coefficient included within a finite interval defined by two separate critical limits (such interval is a semi-infinite region in second-order models). An increase in damping beyond the larger critical value would lead the system to mechanical instability. We proved the existence of a theoretical threshold for the ratio between tendon and muscle stiffness above which critical damping can never be achieved; thus resulting in an oscillatory free response of the system, independently of the value of the damping. Under such condition, combined with high muscle activation, oscillation of the system can be compensated only by active control.

References

References
1.
Seraji
,
H.
,
1994
, “
Adaptive Admittance Control: An Approach To Explicit Force Control in Compliant Motion
,”
Robotics and Automation, 1994, Proceedings of the 1994 IEEE International Conference
, Vol.
2704
, pp.
2705
2712
.
2.
Siciliano
,
B.
, and
Villani
,
L.
,
1999
,
Robot Force Control
,
Kluwer Academic
,
Boston
.
3.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Crago
,
P. E.
,
2001
, “
Effects of Voluntary Force Generation on the Elastic Components of Endpoint Stiffness
,”
Exp. Brain Res.
,
141
(
3
), pp.
312
323
.10.1007/s002210100880
4.
Franklin
,
D. W.
,
Burdet
,
E.
,
Osu
,
R.
,
Kawato
,
M.
, and
Milner
,
T. E.
,
2003
, “
Functional Significance of Stiffness in Adaptation of Multijoint Arm Movements to Stable and Unstable Dynamics
,”
Exp. Brain Res.
,
151
(
2
), pp.
145
157
.10.1007/s00221-003-1443-3
5.
Franklin
,
D. W.
,
Liaw
,
G.
,
Milner
,
T. E.
,
Osu
,
R.
,
Burdet
,
E.
, and
Kawato
,
M.
,
2007
, “
Endpoint Stiffness of the Arm is Directionally Tuned to Instability in the Environment
,”
J. Neurosci.
,
27
(
29
), pp.
7705
7705
.10.1523/JNEUROSCI.0968-07.2007
6.
Popescu
,
F.
,
Hidler
,
J. M.
, and
Rymer
,
W. Z.
,
2003
, “
Elbow Impedance During Goal-Directed Movements
,”
Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale
,
152
(
1
), pp.
17
28
.10.1007/s00221-003-1507-4
7.
Tsuji
,
T.
,
Morasso
,
P. G.
,
Goto
,
K.
, and
Ito
,
K.
,
1995
, “
Human Hand Impedance Characteristics During Maintained Posture
,”
Biol. Cybernetics
,
72
(
6
), pp.
475
485
.10.1007/BF00199890
8.
Kistemaker
,
D. a.
, and
Rozendaal
,
L. a.
,
2011
, “
In Vivo Dynamics of the Musculoskeletal System Cannot be Adequately Described Using a Stiffness-Damping-Inertia Model
,”
PloS One
,
6
(
5
), pp.
e19568
-
e19568
.10.1371/journal.pone.0019568
9.
Piovesan
,
D.
,
Pierobon
,
A.
, and
Mussa-Ivaldi
,
F. A.
,
2012
, “
Third-Order Muscle Models: The Role of Oscillatory Behavior in Force Control
,”
International Mechanical Engineering Congress & Exposition ASME-IMECE
,
Houston, TX
.
10.
Kolesnikov
,
M.
,
Piovesan
,
D.
,
Lynch
,
K.
, and
Mussa-Ivaldi
,
F.
,
2011
, “
On Force Regulation Strategies in Predictable Environments
,”
Engineering in Medicine and Biology Society (EMBS): Annual International Conference of the IEEE
,
1
, pp.
4076
4081
.
11.
Padovan
,
J.
, and
Guo
,
Y.
,
1988
, “
General Response of Viscoelastic Systems Modelled by Fractional Operators
,”
J. Franklin Inst.
,
325
(
2
), pp.
247
275
.10.1016/0016-0032(88)90086-5
12.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2012
, “
Measuring Multi-Joint Stiffness During Single Movements: Numerical Validation of a Novel Time-Frequency Approach
,”
PloS One
,
7
(
3
), p.
e33086
.10.1371/journal.pone.0033086
13.
Mussa Ivaldi
,
F. A.
,
Morasso
,
P.
, and
Zaccaria
,
R.
,
1988
, “
Kinematic Networks. A Distributed Model for Representing and Regularizing Motor Redundancy
,”
Biol. Cybern.
,
60
(
1
), pp.
1
16
.
14.
Fung
,
Y.-C.
,
1970
, “
Mathematical Representation of the Mechanical Properties of the Heart Muscle
,”
J. Biomech.
,
3
(
4
), pp.
381
404
.10.1016/0021-9290(70)90012-6
15.
Lee
,
G.
,
1998
, “
On Cross Effects of Seismic Responses of Structures
,”
Eng. Struct.
,
20
(
4–6
), pp.
503
509
.10.1016/S0141-0296(97)00089-8
16.
Weisstein
,
E. W.
, Cubic Formula, “From MathWorld–A Wolfram Web Resource,” http://mathworld.wolfram.com/CubicFormula.html
17.
Goodman
,
L.
, Synthetic Division, “From MathWorld–A Wolfram Web Resource,” Created by Eric W. Weisstein. http://mathworld.wolfram.com/SyntheticDivision.html
18.
Wren
,
T. a. L.
,
2003
, “
A Computational Model for the Adaptation of Muscle and Tendon Length to Average Muscle Length and Minimum Tendon Strain
,”
J. Biomech.
,
36
(
8
), pp.
1117
1124
.10.1016/S0021-9290(03)00107-6
19.
Loram
,
I. D.
,
Lakie
,
M.
,
Di Giulio
,
I.
, and
Maganaris
,
C. N.
,
2009
, “
The Consequences of Short-Range Stiffness and Fluctuating Muscle Activity for Proprioception of Postural Joint Rotations: The Relevance to Human Standing
,”
J. Neurophysiol.
,
102
(
1
), pp.
460
474
.10.1152/jn.00007.2009
20.
Cook
,
C. S.
, and
McDonagh
,
M.
,
1996
, “
Measurement of Muscle and Tendon Stiffness in Man
,”
Eur. J. Appl. Physiol.
,
72
, pp.
380
382
.10.1007/BF00599700
21.
Cui
,
L.
,
Perreault
,
E. J.
,
Maas
,
H.
, and
Sandercock
,
T. G.
,
2008
, “
Modeling Short-Range Stiffness of Feline Lower Hindlimb Muscles
,”
J. Biomech.
,
41
(
9
), pp.
1945
1952
.10.1016/j.jbiomech.2008.03.024
22.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
1999
, “
In Vivo Human Tendon Mechanical Properties
,”
J. Physiol.
,
521
(
1
), pp.
307
313
.10.1111/j.1469-7793.1999.00307.x
23.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
24.
Walmsley
,
B.
, and
Proske
,
U.
,
1981
, “
Comparison of Stiffness of Soleus and Medial Gastrocnemius Muscles in Cats
,”
J. Neurophysiol.
,
46
(
2
), pp.
250
259
.
25.
Maganaris
,
C. N.
, and
Baltzopoulos
,
V.
,
2001
, “
In Vivo Specific Tension of Human Skeletal Muscle
,”
J. Appl. Phys.
,
90
, pp.
865
872
.
26.
Sacks
,
D.
,
1982
, “
Architecture of the Hind Limb Muscles of Cats: Functional Significance
,”
J. Morphol.
,
173
(
2
), pp.
185
195
.10.1002/jmor.1051730206
27.
Delp
,
S. L.
, and
Buchanan
,
S.
,
1997
, “
How Muscle Architecture and Wrist Flexion-Extension Moment Arms Affect Moments
,”
J. Biomech.
,
30
(
7
), pp.
705
712
.10.1016/S0021-9290(97)00015-8
28.
Loren
,
G. J.
, and
Lieber
,
R. L.
,
1995
, “
Tendon Properties Enhance Wrist Muscle Specialization
,”
J. Biomech.
,
28
(
7
), pp.
791
799
.10.1016/0021-9290(94)00137-S
29.
Murray
,
W. M.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
2002
, “
Scaling of Peak Moment Arms of Elbow Muscles With Upper Extremity Bone Dimensions
,”
J. Biomech.
,
35
, pp.
19
26
.10.1016/S0021-9290(01)00173-7
30.
Yamaguchi
,
G. T.
,
Sawa
,
A. G.-U.
,
Moran
,
D. W.
,
Fessler
,
M. J.
, and
Winters
,
J. M.
,
1990
, “
Appendix: A Survey of Human Musculotendon Actuator Parameters
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
S. L.-Y. W. M.
Winters
, ed.,
Springer
,
New York
, pp.
717
773
.
31.
Ahmad
,
C. S.
,
DiSipio
,
C.
,
Lester
,
J.
,
Gardner
,
T. R.
,
Levine
,
W. N.
, and
Bigliani
,
L. U.
,
2007
, “
Factors Affecting Dropped Biceps Deformity After Tenotomy of the Long Head of the Biceps Tendon
,”
Arthroscopy: J. Relat. Surg.
,
23
(
5
), pp.
537
541
.10.1016/j.arthro.2006.12.030
32.
Athwal
,
G. S.
,
Steinmann
,
S. P.
, and
Rispoli
,
D. M.
,
2007
, “
The Distal Biceps Tendon: Footprint and Relevant Clinical Anatomy
,”
J. Hand Surgery
,
32
(
8
), pp.
1225
1229
.10.1016/j.jhsa.2007.05.027
33.
Baumfeld
,
J. a.
,
van Riet
,
R. P.
,
Zobitz
,
M. E.
,
Eygendaal
,
D.
,
An
,
K.-N.
, and
Steinmann
,
S. P.
,
2010
, “
Triceps Tendon Properties and Its Potential as an Autograft
,”
J. Shoulder Elbow Surgery
,
19
(
5
), pp.
697
699
.10.1016/j.jse.2009.12.001
34.
Caldwell
,
G. E.
, and
Chapman
,
A. E.
,
1991
, “
The General Distribution Problem: A Physiological Solution Which Includes Antagonism
,”
Human Movement Sci.
,
10
, pp.
355
392
.10.1016/0167-9457(91)90012-M
35.
Clavert
,
P.
,
Kempf
,
J. F.
,
Bonnomet
,
F.
,
Boutemy
,
P.
,
Marcelin
,
L.
, and
Kahn
,
J. L.
,
2001
, “
Effects of Freezing/Thawing on the Biomechanical Properties of Human Tendons
,”
Surg. Radiol. Anat.
,
23
(
4
), pp.
259
262
.10.1007/s00276-001-0259-8
36.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2011
, “
Comparative Analysis of Methods for Estimating Arm Segment Parameters and Joint Torques From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031003
.10.1115/1.4003308
37.
Sandercock
,
T. G.
, and
Heckman
,
C. J.
,
1997
, “
Force From Cat Soleus Muscle During Imposed Locomotor-Like Movements: Experimental Data Versus Hill-Type Model Predictions
,”
J. Neurophysiol.
,
77
(
3
), pp.
1538
1552
.
38.
McGowan
,
C. P.
,
Neptune
,
R. R.
, and
Herzog
,
W.
,
2013
, “
A Phenomenological Muscle Model to Assess History Dependent Effects in Human Movement
,”
J. Biomech.
,
46
(
1
), pp.
151
157
.10.1016/j.jbiomech.2012.10.034
39.
Nichols
,
T. R.
, and
Houk
,
J. C.
,
1976
, “
Improvement in Linearity and Regulation of Stiffness That Results From Actions of Stretch Reflex
,”
J. Neurophysiol.
,
39
(
1
), pp.
119
142
.
40.
Kistemaker
,
D. A.
,
Van Soest
,
A. J.
,
Wong
,
J. D.
,
Kurtzer
,
I. L.
, and
Gribble
,
P. L.
,
2012
, “
Control of Position and Movement is Simplified by Combined Muscle Spindle and Golgi Tendon Organ Feedback
,”
J. Neurophysiol.
,
109
(
4
), pp.
1126
1139
.10.1152/jn.00751.2012
41.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots,’ Proceedings, 1995 IEEE/RSJ International Conference
, Vol.
391
, pp.
399
406
.
42.
Pruszynski
,
J. A.
,
Kurtzer
,
I.
, and
Scott
,
S. H.
,
2011
, “
The Long-Latency Reflex is Composed of at Least Two Functionally Independent Processes
,”
J. Neurophysiol.
,
106
(
1
), pp.
449
459
.10.1152/jn.01052.2010
43.
Suzuki
,
M.
,
Shiller
,
D. M.
,
Gribble
,
P. L.
, and
Ostry
,
D. J.
,
2001
, “
Relationship Between Cocontraction, Movement Kinematics and Phasic Muscle Activity in Single-Joint Arm Movement
,”
Exp. Brain Res.
,
140
(
2
), pp.
171
181
.10.1007/s002210100797
44.
Shadmehr
,
R.
, and
Mussa-Ivaldi
,
F.
,
1994
, “
Adaptive Representation of Dynamics During Learning of a Motor Task
,”
J. Neurosci.
,
14
(
5
), pp.
3208
3224
.
45.
Chib
,
V. S.
,
Krutky
,
M. A.
,
Lynch
,
K. M.
, and
Mussa-Ivaldi
,
F. A.
,
2009
, “
The Separate Neural Control of Hand Movements and Contact Forces
,”
J. Neurosci.
,
29
(
12
), pp.
3939
3947
.10.1523/JNEUROSCI.5856-08.2009
46.
Piovesan
,
D.
,
Casadio
,
M.
,
Mussa-Ivaldi
,
F. A.
, and
Morasso
,
P.
,
2012
, “
Comparing Two Computational Mechanisms for Explaining Functional Recovery in Robot-Therapy of Stroke Survivors
,”
Biomedical Robotics and Biomechatronics (BioRob): Annual International Conference of the IEEE
, pp.
1488
1493
.
47.
Piovesan
,
D.
,
Dizio
,
P.
, and
Lackner
,
J. R.
,
2009
, “
A New Time-Frequency Approach to Estimate Single Joint Upper Limb Impedance
,”
Engineering in Medicine and Biology Society (EMBS): Annual International Conference of the IEEE
,
1
(
3
), pp.
1282
1285
.
48.
Piovesan
,
D.
,
Casadio
,
M.
,
Mussa-Ivaldi
,
F. A.
, and
Morasso
,
P. G.
,
2011
, “
Multijoint Arm Stiffness During Movements Following Stroke: Implications for Robot Therapy
,”
Rehabilitation Robotics (ICORR), 2011 IEEE International Conference
, pp.
1
7
.
49.
Piovesan
,
D.
,
Casadio
,
M.
,
Morasso
,
P.
, and
Giannoni
,
P.
,
2011
, “
Influence of Visual Feedback in the Regulation of Arm Stiffness Following Stroke
,”
Engineering in Medicine and Biology Society (EMBS): Annual International Conference of the IEEE
, pp.
8239
8242
.
You do not currently have access to this content.