Intra- and inter-specimen variations in trabecular anisotropy are often ignored in quantitative computed tomography (QCT)-based finite element (FE) models of the vertebra. The material properties are typically estimated solely from local variations in bone mineral density (BMD), and a fixed representation of elastic anisotropy (“generic anisotropy”) is assumed. This study evaluated the effect of incorporating specimen-specific, trabecular anisotropy on QCT-based FE predictions of vertebral stiffness and deformation patterns. Orthotropic material properties estimated from microcomputed tomography data (“specimen-specific anisotropy”), were assigned to a large, columnar region of the L1 centrum (n = 12), and generic-anisotropic material properties were assigned to the remainder of the vertebral body. Results were compared to FE analyses in which generic-anisotropic properties were used throughout. FE analyses were also performed on only the columnar regions. For the columnar regions, the axial stiffnesses obtained from the two categories of material properties were uncorrelated with each other (p = 0.604), and the distributions of minimum principal strain were distinctly different (p ≤ 0.022). In contrast, for the whole vertebral bodies in both axial and flexural loading, the stiffnesses obtained using the two categories of material properties were highly correlated (R2 > 0.82, p < 0.001) with, and were no different (p > 0.359) from, each other. Only moderate variations in strain distributions were observed between the two categories of material properties. The contrasting results for the columns versus vertebrae indicate a large contribution of the peripheral regions of the vertebral body to the mechanical behavior of this bone. In companion analyses on the effect of the degree of anisotropy (DA), the axial stiffnesses of the trabecular column (p < 0.001) and vertebra (p = 0.007) increased with increasing DA. These findings demonstrate the need for accurate modeling of the peripheral regions of the vertebral body in analyses of the mechanical behavior of the vertebra.

References

References
1.
Consensus Development Conference
,
1993
, “
Diagnosis, Prophylaxis, and Treatment of Osteoporosis
,”
Am. J. Med.
,
94
, pp.
646
650
.
2.
Riggs
,
B. L.
, and
Melton
,
L. J.
,
1995
, “
The Worldwide Problem of Osteoporosis: Insights Afforded by Epidemiology
,”
Bone
,
17
(
5 Suppl
), pp.
S505
S511
.10.1016/8756-3282(95)00258-4
3.
Christiansen
,
B. A.
,
Kopperdahl
,
D. L.
,
Kiel
,
D. P.
,
Keaveny
,
T. M.
, and
Bouxsein
,
M. L.
,
2011
, “
Mechanical Contributions of the Cortical and Trabecular Compartments Contribute to Differences in Age-Related Changes in Vertebral Body Strength in Men and Women Assessed by QCT-Based Finite Element Analysis
,”
J. Bone Miner. Res.
,
26
(
5
), pp.
974
983
.10.1002/jbmr.287
4.
Zeinali
,
A.
,
Hashemi
,
B.
, and
Akhlaghpoor
,
S.
,
2010
, “
Noninvasive Prediction of Vertebral Body Compressive Strength Using Nonlinear Finite Element Method and an Image Based Technique
,”
Phys. Medica
,
26
(
2
), pp.
88
97
.10.1016/j.ejmp.2009.08.002
5.
Dall'Ara
,
E.
,
Pahr
,
D.
,
Varga
,
P.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2011
, “
QCT-Based Finite Element Models Predict Human Vertebral Strength in Vitro Significantly Better Than Simulated DEXA
,”
Osteoporosis Int.
,
23
(2), pp.
563
572
.10.1007/s00198-011-1568-3
6.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Models Predict in Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.10.1016/S8756-3282(03)00210-2
7.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
, pp.
559
565
.
8.
Fields
,
A. J.
,
Eswaran
,
S. K.
,
Jekir
,
M. G.
, and
Keaveny
,
T. M.
,
2009
, “
Role of Trabecular Microarchitecture in Whole-Vertebral Body Biomechanical Behavior
,”
J. Bone Miner. Res.
,
24
(
9
), pp.
1523
1530
.10.1359/jbmr.090317
9.
Roux
,
J.-P.
,
Wegrzyn
,
J.
,
Arlot
,
M. E.
,
Guyen
,
O.
,
Delmas
,
P. D.
,
Chapurlat
,
R.
, and
Bouxsein
,
M. L.
,
2010
, “
Contribution of Trabecular and Cortical Components to Biomechanical Behavior of Human Vertebrae: An ex Vivo Study
,”
J. Bone Miner. Res.
,
25
(
2
), pp.
356
361
.10.1359/jbmr.090803
10.
Banse
,
X.
,
Devogelaer
,
J. P.
,
Munting
,
E.
,
Delloye
,
C.
,
Cornu
,
O.
, and
Grynpas
,
M.
,
2001
, “
Inhomogeneity of Human Vertebral Cancellous Bone: Systematic Density and Structure Patterns Inside the Vertebral Body
,”
Bone
,
28
(
5
), pp.
563
571
.10.1016/S8756-3282(01)00425-2
11.
Mosekilde
,
L.
,
1988
, “
Age-Related Changes in Vertebral Trabecular Bone Architecture–Assessed by a New Method
,”
Bone
,
9
(
4
), pp.
247
250
.10.1016/8756-3282(88)90038-5
12.
Graeff
,
C.
,
Timm
,
W.
,
Nickelsen
,
T. N.
,
Farrerons
,
J.
,
Marín
,
F.
,
Barker
,
C.
, and
Glüer
,
C. C.
,
2007
, “
Monitoring Teriparatide-Associated Changes in Vertebral Microstructure by High-Resolution CT in Vivo: Results from the Eurofors Study
,”
J. Bone Miner. Res.
,
22
(
9
), pp.
1426
1433
.10.1359/jbmr.070603
13.
Gordon
,
C. L.
,
Lang
,
T. F.
,
Augat
,
P.
, and
Genant
,
H. K.
,
1998
, “
Image-Based Assessment of Spinal Trabecular Bone Structure From High-Resolution Ct Images
,”
Osteoporosis Int.
,
8
(
4
), pp.
317
325
.10.1007/s001980050070
14.
Ito
,
M.
,
Ikeda
,
K.
,
Nishiguchi
,
M.
,
Shindo
,
H.
,
Uetani
,
M.
,
Hosoi
,
T.
, and
Orimo
,
H.
,
2005
, “
Multi-Detector Row CT Imaging of Vertebral Microstructure for Evaluation of Fracture Risk
,”
J. Bone Miner. Res.
,
20
(
10
), pp.
1828
1836
.10.1359/JBMR.050610
15.
Thomsen
,
J. S.
,
Ebbesen
,
E. N.
, and
Mosekilde
,
L. I.
,
2002
, “
Age-Related Differences Between Thinning of Horizontal and Vertical Trabeculae in Human Lumbar Bone as Assessed by a New Computerized Method
,”
Bone
,
31
(
1
), pp.
136
142
.10.1016/S8756-3282(02)00801-3
16.
McDonnell
,
P.
,
McHugh
,
P.
, and
O'Mahoney
,
D.
,
2007
, “
Vertebral Osteoporosis and Trabecular Bone Quality
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
170
189
.10.1007/s10439-006-9239-9
17.
Cowin
,
S. C.
,
1985
, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
(
2
), pp.
137
147
.10.1016/0167-6636(85)90012-2
18.
Zysset
,
P. K.
, and
Curnier
,
A.
,
1995
, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
,
21
(
4
), pp.
243
250
.10.1016/0167-6636(95)00018-6
19.
Zysset
,
P. K.
,
2003
, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
,
36
(
10
), pp.
1469
1485
.10.1016/S0021-9290(03)00128-3
20.
Chevalier
,
Y.
,
Pahr
,
D.
, and
Zysset
,
P. K.
,
2009
, “
The Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111003
.10.1115/1.3212097
21.
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2009
, “
A Comparison of Enhanced Continuum Fe With Micro Fe Models of Human Vertebral Bodies
,”
J. Biomech.
,
42
(
4
), pp.
455
462
.10.1016/j.jbiomech.2008.11.028
22.
Unnikrishnan
,
G. U.
, and
Morgan
,
E. F.
,
2011
, “
A New Material Mapping Procedure for Quantitative Computed Tomography-Based, Continuum Finite Element Analyses of the Vertebra
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071001
.10.1115/1.4004190
23.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
(
4
), pp.
801
805
.10.1016/S0736-0266(01)00185-1
24.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
,
1999
, “
The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone
,
25
, pp.
55
60
.10.1016/S8756-3282(99)00098-8
25.
Mosekilde
,
L.
,
Mosekilde
,
L.
, and
Danielsen
,
C. C.
,
1987
, “
Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Density and Age in Normal Individuals
,”
Bone
,
8
, pp.
79
85
.10.1016/8756-3282(87)90074-3
26.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
,
1988
, “
Limitations of the Continuum Assumption in Cancellous Bone
,”
J. Biomech.
,
21
(
4
), pp.
269
275
.10.1016/0021-9290(88)90257-6
27.
Ridler
,
T. W.
, and
Calvard
,
S.
,
1978
, “
Picture Thresholding Using an Iterative Selection Method
,”
IEEE Trans. Syst. Man Cybern.
,
8
(
8
), pp.
630
632
.10.1109/TSMC.1978.4310039
28.
Odgaard
,
A.
,
1997
, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone
,
20
(
4
), pp.
315
328
.10.1016/S8756-3282(97)00007-0
29.
Whitehouse
,
W. J.
,
1974
, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
2
, pp.
153
168
.10.1111/j.1365-2818.1974.tb03878.x
30.
Harrigan
,
T. P.
, and
Mann
,
R. W.
,
1984
, “
Characterization of Microstructural Anisotropy in Orthotropic Materials Using a Second Rank Tensor
,”
J. Mater. Sci.
,
19
(
3
), pp.
761
767
.10.1007/BF00540446
31.
Kabel
,
J.
,
Van Rietbergen
,
B.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
Constitutive Relationships of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,”
Bone
,
25
(
4
), pp.
481
486
.10.1016/S8756-3282(99)00190-8
32.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.10.1016/S8756-3282(00)00268-4
33.
Lempriere
,
B. M.
,
1968
, “
Poisson's Ratio in Orthotropic Materials
,”
AIAA J.
,
6
, pp.
2226
2227
.10.2514/3.4974
34.
Hildebrand
,
T.
,
Laib
,
A.
,
Müller
,
R.
,
Dequeker
,
J.
, and
Rüegsegger
,
P.
,
1999
, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data From Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
,
14
(
7
), pp.
1167
1174
.10.1359/jbmr.1999.14.7.1167
35.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
(
3
), pp.
300
308
.10.1002/jor.1100160305
36.
Wolfram
,
U.
,
Wilke
,
H.-J.
, and
Zysset
,
P. K.
,
2010
, “
Valid Micro Finite Element Models of Vertebral Trabecular Bone Can Be Obtained Using Tissue Properties Measured With Nanoindentation Under Wet Conditions
,”
J. Biomech.
,
43
(
9
), pp.
1731
1737
.10.1016/j.jbiomech.2010.02.026
37.
Bevill
,
G.
,
Eswaran
,
S. K.
,
Farahmand
,
F.
, and
Keaveny
,
T. M.
,
2009
, “
The Influence of Boundary Conditions and Loading Mode on High-Resolution Finite Element-Computed Trabecular Tissue Properties
,”
Bone
,
44
(
4
), pp.
573
578
.10.1016/j.bone.2008.11.015
38.
Lochmüller
,
E. M.
,
Pöschl
,
K.
,
Würstlin
,
L.
,
Matsuura
,
M.
,
Müller
,
R.
,
Link
,
T.
, and
Eckstein
,
F.
,
2008
, “
Does Thoracic or Lumbar Spine Bone Architecture Predict Vertebral Failure Strength More Accurately Than Density?
,”
Osteoporosis Int.
,
19
(
4
), pp.
537
545
.10.1007/s00198-007-0478-x
39.
Eckstein
,
F.
,
Fischbeck
,
M.
,
Kuhn
,
V.
,
Link
,
T. M.
,
Priemel
,
M.
, and
Lochmüller
,
E.-M.
,
2004
, “
Determinants and Heterogeneity of Mechanical Competence Throughout the Thoracolumbar Spine of Elderly Women and Men
,”
Bone
,
35
(
2
), pp.
364
374
.10.1016/j.bone.2004.04.008
40.
Andresen
,
R.
,
Werner
,
H.
, and
Schober
,
H.
,
1998
, “
Contribution of the Cortical Shell of Vertebrae to Mechanical Behaviour of the Lumbar Vertebrae With Implications for Predicting Fracture Risk
,”
Br. J. Radiol.
,
71
(
847
), pp.
759
765
.
41.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
,
2006
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
,
21
(
2
), pp.
307
314
.10.1359/jbmr.2006.21.2.307
42.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1997
, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
,
22
(
2
), pp.
140
150
.10.1097/00007632-199701150-00004
43.
Homminga
,
J.
,
Weinans
,
H.
,
Gowin
,
W.
,
Felsenberg
,
D.
, and
Huiskes
,
R.
,
2001
, “
Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture But Not the Vertebral Load Distribution
,”
Spine
,
26
(
14
), pp.
1555
1560
.10.1097/00007632-200107150-00010
44.
Rockoff
,
S. D.
,
Sweet
,
E.
, and
Bleustein
,
J.
,
1969
, “
The Relative Contribution of Trabecular and Cortical Bone to the Strength of Human Lumbar Vertebrae
,”
Calcif. Tissue Int.
,
3
(
1
), pp.
163
175
.10.1007/BF02058659
45.
Ito
,
M.
,
Nishida
,
A.
,
Koga
,
A.
,
Ikeda
,
S.
,
Shiraishi
,
A.
,
Uetani
,
M.
,
Hayashi
,
K.
, and
Nakamura
,
T.
,
2002
, “
Contribution of Trabecular and Cortical Components to the Mechanical Properties of Bone and Their Regulating Parameters
,”
Bone
,
31
(
3
), pp.
351
358
.10.1016/S8756-3282(02)00830-X
46.
Silva
,
M. J.
,
Wang
,
C.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1994
, “
Direct and Computed Tomography Thickness Measurements of the Human, Lumbar Vertebral Shell and Endplate
,”
Bone
,
15
(
4
), pp.
409
414
.10.1016/8756-3282(94)90817-6
47.
Eswaran
,
S. K.
,
Gupta
,
A.
, and
Keaveny
,
T. M.
,
2007
, “
Locations of Bone Tissue at High Risk of Initial Failure During Compressive Loading of the Human Vertebral Body
,”
Bone
,
41
(
4
), pp.
733
739
.10.1016/j.bone.2007.05.017
48.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmüller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
,
2004
, “
The Osteoporotic Vertebral Structure is Well Adapted to the Loads of Daily Life, But Not to Infrequent ‘Error’ Loads
,”
Bone
,
34
(
3
), pp.
510
516
.10.1016/j.bone.2003.12.001
49.
Boccaccio
,
A.
,
Vena
,
P.
,
Gastaldi
,
D.
,
Franzoso
,
G.
,
Pietrabissa
,
R.
, and
Pappalettere
,
C.
,
2008
, “
Finite Element Analysis of Cancellous Bone Failure in the Vertebral Body of Healthy and Osteoporotic Subjects
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
7
), pp.
1023
1036
.10.1243/09544119JEIM296
50.
Kopperdahl
,
D. L.
,
Pearlman
,
J. L.
, and
Keaveny
,
T. M.
,
2000
, “
Biomechanical Consequences of an Isolated Overload on the Human Vertebral Body
,”
J. Orthop. Res.
,
18
(
5
), pp.
685
690
.10.1002/jor.1100180502
51.
Maquer
,
G.
,
Dall'Ara
,
E.
, and
Zysset
,
P. K.
,
2012
, “
Removal of the Cortical Endplates has Little Effect on Ultimate Load and Damage Distribution in QCT-Based Voxel Models of Human Lumbar Vertebrae Under Axial Compression
,”
J. Biomech.
,
45
(
9
), pp.
1733
1738
.10.1016/j.jbiomech.2012.03.019
52.
Horst
,
M.
, and
Brinckmann
,
P.
,
1981
, “
Measurement of the Distribution of Axial Stress on the End-Plate of the Vertebral Body
,”
Spine
,
6
(
3
), pp.
217
232
.10.1097/00007632-198105000-00004
53.
Mcnally
,
D. S.
, and
Adams
,
M. A.
,
1992
, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
,
17
(
1
), pp.
66
73
.10.1097/00007632-199201000-00011
54.
Adams
,
M. A.
,
Mcnally
,
D. S.
, and
Dolan
,
P.
,
1996
, “
‘Stress’ Distributions Inside Intervertebral Discs: The Effects of Age and Degeneration
,”
J Bone Jt. Surg. Br.
,
78
(
6
), pp.
965
972
.10.1302/0301-620X78B6.1287
55.
Pollintine
,
P.
,
Dolan
,
P.
,
Tobias
,
J. H.
, and
Adams
,
M. A.
,
2004
, “
Intervertebral Disc Degeneration Can Lead to ‘Stress-Shielding’ of the Anterior Vertebral Body: A Cause of Osteoporotic Vertebral Fracture?
,”
Spine
,
29
(
7
), pp.
774
782
.10.1097/01.BRS.0000119401.23006.D2
56.
Black
,
D. M.
,
Greenspan
,
S. L.
,
Ensrud
,
K. E.
,
Palermo
,
L.
,
Mcgowan
,
J. A.
,
Lang
,
T. F.
,
Garnero
,
P.
,
Bouxsein
,
M. L.
,
Bilezikian
,
J. P.
, and
Rosen
,
C. J.
,
2003
, “
The Effects of Parathyroid Hormone and Alendronate Alone or in Combination in Postmenopausal Osteoporosis
,”
N. Engl. J. Med.
,
349
(
13
), pp.
1207
1215
.10.1056/NEJMoa031975
57.
Rubin
,
M. R.
,
Cosman
,
F.
,
Lindsay
,
R.
, and
Bilezikian
,
J. P.
,
2002
, “
The Anabolic Effects of Parathyroid Hormone
,”
Osteoporosis Int.
,
13
(
4
), pp.
267
277
.10.1007/s001980200026
You do not currently have access to this content.