A novel model for the blood system is postulated focusing on the flow rate and pressure distribution inside the arterioles and venules of the pulmonary acinus. Based upon physiological data it is devoid of any ad hoc constants. The model comprises nine generations of arterioles, venules, and capillaries in the acinus, the gas exchange unit of the lung. Blood is assumed incompressible and Newtonian and the blood vessels are assumed inextensible. Unlike previous models of the blood system, the venules and arterioles open up to the capillary network in numerous locations along each generation. The large number of interconnected capillaries is perceived as a porous medium in which the flow is macroscopically unidirectional from arterioles to venules openings. In addition, the large number of capillaries extending from each arteriole and venule allows introduction of a continuum theory and formulation of a novel system of ordinary, nonlinear differential equations which governs the blood flow and pressure fields along the arterioles, venules, and capillaries. The solution of the differential equations is semianalytical and requires the inversion of three diagonal, 9 × 9 matrices only. The results for the total flow rate of blood through the acinus are within the ballpark of physiological observations despite the simplifying assumptions used in our model. The results also manifest that the contribution of the nonlinear convection term of the Navier-Stokes equations has little effect (less than 2%) on the total blood flow entering/leaving the acinus despite the fact that the Reynolds number is not much smaller than unity at the proximal generations. The model makes it possible to examine some pathological cases. Here, centri-acinar and distal emphysema were investigated yielding a reduction in inlet blood flow rate.

References

References
1.
Marshall
,
B.
, and
Marshall
,
C.
,
1988
, “
A Model for Hypoxic Constriction of the Pulmonary Circulation
,”
J. Appl. Physiol.
,
64
, pp.
68
77
.10.1063/1.341220
2.
Mélot
,
C.
,
Delcroix
,
M.
,
Closset
,
J.
,
Vanderhoeft
,
P.
,
Lejeune
,
P.
,
Leeman
,
M.
, and
Naeije
,
R.
,
1995
, “
Starling Resistor vs. Distensible Vessel Models for Embolic Pulmonary Hypertension
,”
Am. J. Physiol. Heart C
,
268
, pp.
H817
H827
.
3.
Roselli
,
R. J.
, and
Parker
,
R. E.
,
1987
, “
Venous Occlusion Measurement of Pulmonary Capillary Pressure: Effects of Embolization
,”
J. Appl. Physiol.
,
63
, pp.
2340
2342
.
4.
Bshouty
,
Z.
, and
Younes
,
M.
,
1990
, “
Distensibility and Pressure-Flow Relationship of the Pulmonary Circulation. II. Multibranched Model
,”
J. Appl. Physiol.
,
68
, pp.
1514
1527
.
5.
Bshouty
,
Z.
, and
Younes
,
M.
,
1990
, “
Distensibility and Pressure-Flow Relationship of the Pulmonary Circulation. I. Single-Vessel Model
,”
J. Appl. Physiol.
,
68
, pp.
1501
1513
.
6.
Dawson
,
C. A.
,
Krenz
,
G. S.
,
Karau
,
K. L.
,
Haworth
,
S. T.
,
Hanger
,
C. C.
, and
Linehan
,
J. H.
,
1999
, “
Structure-Function Relationships in the Pulmonary Arterial Tree
,”
J. Appl. Physiol.
,
86
, pp.
569
583
.
7.
Krenz
,
G. S.
,
Linehan
,
J. H.
, and
Dawson
,
C. A.
,
1992
, “
A Fractal Continuum Model of the Pulmonary Arterial Tree
,”
J. Appl. Physiol.
,
72
, pp.
2225
2237
.
8.
Zhuang
,
F. Y.
,
Fung
,
Y. C.
, and
Yen
,
R. T.
,
1983
, “
Analysis of Blood Flow in Cat's Lung With Detailed Anatomical and Elasticity Data
,”
J. Appl. Physiol.
,
55
, pp.
1341
1348
.content/55/4/1341.abstract
9.
Burrowes
,
K. S.
,
Clark
,
A. R.
, and
Tawhai
,
M. H.
,
2011
, “
Blood Flow Redistribution and Ventilation-Perfusion Mismatch During Embolic Pulmonary Occlusion
,”
Pulmonary Circ.
,
1
, pp.
365
376
.10.4103/2045-8932.87302
10.
Burrowes
,
K. S.
,
Clark
,
A. R.
,
Marcinkowski
,
A.
,
Wilsher
,
M. L.
,
Milne
,
D. G.
, and
Tawhai
,
M. H.
,
2011
, “
Pulmonary Embolism: Predicting Disease Severity
,”
Philos. Trans. R. Soc. Sect. A
,
369
, pp.
4145
4148
.10.1098/rsta.2011.0278
11.
Clark
,
A. R.
,
Tawhai
,
M. H.
, and
Burrowes
,
K. S.
,
2011
, “
The Interdependent Contributions of Gravitational and Structural Features to Perfusion Distribution in a Multi-Scale Model of the Pulmonary Circulation
,”
J. Appl. Physiol.
,
110
, pp.
943
945
.10.1152/japplphysiol.00775.2010
12.
Burrowes
,
K. S.
,
Tawhai
,
M. H.
, and
Hunter
,
P. J.
,
2004
, “
Modeling RBC and Neutrophil Distribution Through an Anatomically Based Pulmonary Capillary Network
,”
Ann. Biomed. Eng.
,
32
, pp.
585
595
.10.1023/B:ABME.0000019178.95185.ad
13.
Dhadwal
,
A.
,
Wiggs
,
B.
,
Doerschuk
,
C.
, and
Kamm
,
R.
,
1997
, “
Effects of Anatomic Variability on Blood Flow and Pressure Gradients in the Pulmonary Capillaries
,”
J. Appl. Physiol.
,
83
, pp.
1711
1720
.
14.
Fung
,
Y. C.
, and
Yen
,
R. T.
,
1986
, “
A New Theory of Pulmonary Blood Flow in Zone 2 Condition
,”
J. Appl. Physiol.
,
60
, pp.
1638
1650
.
15.
Haefeli-Bleuer
,
B.
, and
Weibel
,
E. R.
,
1988
, “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
,
220
, pp.
401
414
.10.1002/ar.1092200410
16.
Hopkins
,
S. R.
,
Belzberg
,
B. R.
,
Wiggs
,
B. R.
, and
McKenzie
,
D. C.
,
1996
, “
Pulmonary Transit Time and Diffusion Limitation During Heavy Exercise in Athletes
,”
Respir. Physiol.
,
103
, pp.
67
73
.10.1016/0034-5687(95)00028-3
17.
Fung
,
Y. C.
, and
Sobin
,
S. S.
,
1969
, “
Theory of Sheet Flow in Lung Alveoli
,”
J. Appl. Physiol.
,
26
, pp.
472
488
.
18.
Huang
,
Y.
,
Doerschuk
,
C. M.
, and
Kamm
,
R. D.
,
2001
, “
Computational Modeling of RBC and Neutrophil Transit Through the Pulmonary Capillaries
,”
J. Appl. Physiol.
,
90
, pp.
545
564
.10.1063/1.1379354
19.
Clark
,
A. R.
,
Burrowes
,
K. S.
, and
Tawhai
,
M. H.
,
2010
, “
Contribution of Serial and Parallel Micro-Perfusion to Spatial Variability in Pulmonary Inter- and Intra-Acinar Blood Flow
,”
J. Appl. Physiol.
,
108
, pp.
1116
1126
.10.1152/japplphysiol.01177.2009
20.
Clark
,
A. R.
,
Burrowes
,
K. S.
, and
Tawhai
,
M. H.
,
2011
, “
The Impact of Micro-Embolism Size on Haemodynamic Changes in the Pulmonary Micro-Circulation
,”
Respir. Physiol. Neurobiol.
,
175
, pp.
365
374
.10.1016/j.resp.2010.12.018
21.
Krenz
,
G. S.
, and
Dawson
,
C. A.
,
2003
, “
Flow and Pressure Distributions in Vascular Networks Consisting of Distensible Vessels
,”
Am. J. Physiol. Heart C
,
284
, pp.
H2192
H2203
.
22.
Bachelor
,
G. K.
,
1967
,
An Introduction to Fluid Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
23.
Terrill
,
R. M.
, and
Thomas
,
P. W.
,
1969
, “
Laminar Flow in a Uniformly Porous Pipe
,”
Appl. Sci. Res.
,
21
, pp.
37
67
.10.1007/BF00411596
24.
Terrill
,
R. M.
,
1964
, “
Laminar Flow in a Uniformly Porous Channel
,”
Aeronaut. Q.
,
15
, pp.
299
310
.
25.
Fung
,
Y. C.
,
1997
, “
Circulation
,”
Biomechanics
,
Springer
,
New York
.
26.
Lonsdorfer-Wolf
,
E.
,
Richard
,
R.
,
Doutreleau
,
S.
,
Billat
,
V.
,
Oswald-Mammodosser
,
M.
, and
Lonsdorfer
,
J.
,
2003
, “
Pulmonary Hemodynamics During a Strenuous Intermittent Exercise in Healthy Subjects
,”
Med. Sci. Sports Exerc.
,
35
, pp.
1866
1874
.10.1249/01.MSS.0000094181.07571.72
27.
Pries
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
,
1996
, “
Biophysical Aspects of Blood Flow in the Microvasculature
,”
Cardiovasc. Res.
,
32
, pp.
654
667
.10.1016/S0008-6363(96)00065-X
28.
Read
,
J.
,
1969
, “
Stratified Pulmonary Blood Flow: Some Consequences in Emphysema and Pulmonary Embolism
,”
Brit. Med. J.
,
2
, pp.
44
46
.10.1136/bmj.2.5648.44
29.
Wagner
,
P.
,
McRae
,
J.
, and
Read
,
J.
,
1967
, “
Stratified Distribution of Blood Flow in Secondary Lobule of the Rat Lung
,”
J. Appl. Physiol.
,
22
, pp.
1115
1123
.
30.
West
,
J. B.
,
Maloney
,
J. E.
, and
Castle
,
B. L.
,
1972
, “
Effect of Stratified Inequality of Blood Flow on Gas Exchange in Liquid-Filled Lungs
,”
J. Appl. Physiol.
,
32
, pp.
357
361
.
31.
Sapoval
,
B.
,
Filoche
,
M.
, and
Weibel
,
E. R.
,
2002
, “
Smaller is Better—But Not Too Small: A Physical Scale for the Design of the Mammalian Pulmonary Acinus
,”
Proc. Natl. Acad. Sci.
,
99
, pp.
10411
10416
.10.1073/pnas.122352499
You do not currently have access to this content.