Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7–1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8–83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its similarities to human scale, including the existence of a human-like CSF fluid layer.

References

References
1.
Kwon
,
B. K.
,
Hillyer
,
J.
, and
Tetzlaff
,
W.
,
2010
, “
Translational Research in Spinal Cord Injury: A Survey of Opinion From the SCI Community
,”
J. Neurotrauma
,
27
(
1
), pp.
21
33
.10.1089/neu.2009.1048
2.
Tator
,
C. H.
,
1995
, “
Update on the Pathophysiology and Pathology of Acute Spinal Cord Injury
,”
Brain Pathol.
,
5
(
4
), pp.
407
413
.10.1111/j.1750-3639.1995.tb00619.x
3.
Courtine
,
G.
,
Bunge
,
M. B.
,
Fawcett
,
J. W.
,
Grossman
,
R. G.
,
Kaas
,
J. H.
,
Lemon
,
R.
,
Maier
,
I.
,
Martin
,
J.
,
Nudo
,
R. J.
,
Ramon-Cueto
,
A.
,
Rouiller
,
E. M.
,
Schnell
,
L.
,
Wannier
,
T.
,
Schwab
,
M. E.
, and
Edgerton
,
V. R.
,
2007
, “
Can Experiments in Nonhuman Primates Expedite the Translation of Treatments for Spinal Cord Injury in Humans?
,”
Nat. Med.
,
13
(
5
), pp.
561
566
.10.1038/nm1595
4.
Jeffery
,
N. D.
,
Smith
,
P. M.
,
Lakatos
,
A.
,
Ibanez
,
C.
,
Ito
,
D.
, and
Franklin
,
R. J.
,
2006
, “
Clinical Canine Spinal Cord Injury Provides an Opportunity to Examine the Issues in Translating Laboratory Techniques Into Practical Therapy
,”
Spinal Cord
,
44
(
10
), pp.
584
593
.10.1038/sj.sc.3101912
5.
Lee
,
J. H.
,
Jones
,
C. F.
,
Okon
,
E. B.
,
Anderson
,
L.
,
Tigchelaar
,
S.
,
Kooner
,
P.
,
Godbey
,
T.
,
Chua
,
B.
,
Gray
,
G.
,
Hildebrandt
,
R.
,
Cripton
,
P.
,
Tetzlaff
,
W.
, and
Kwon
,
B. K.
,
2013
, “
A Novel Porcine Model of Traumatic Thoracic Spinal Cord Injury
,”
J. Neurotrauma
,
30
(
3
), pp.
142
159
.10.1089/neu.2012.2386
6.
Zaaroor
,
M.
,
Kosa
,
G.
,
Peri-Eran
,
A.
,
Maharil
,
I.
,
Shoham
,
M.
, and
Goldsher
,
D.
,
2006
, “
Morphological Study of the Spinal Canal Content for Subarachnoid Endoscopy
,”
Minimially Invasive Neurosurgery
,
49
, pp.
220
226
.10.1055/s-2006-948000
7.
Gellad
,
F.
,
Rao
,
K. C.
,
Joseph
,
P. M.
, and
Vigorito
,
R. D.
,
1983
, “
Morphology and Dimensions of the Thoracic Cord by Computer-Assisted Metrizamide Myelography
,”
Am. J. Neuroradiol.
,
4
(
3
), pp.
614
617
.
8.
Hung
,
T. K.
,
Albin
,
M. S.
,
Brown
,
T. D.
,
Bunegin
,
L.
,
Albin
,
R.
, and
Jannetta
,
P. J.
,
1975
, “
Biomechanical Responses to Open Experimental Spinal Cord Injury
,”
Surg. Neurol.
,
4
(
2
), pp.
271
276
.
9.
Persson
,
C.
,
McLure
,
S. W.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2009
, “
The Effect of Bone Fragment Size and Cerebrospinal Fluid on Spinal Cord Deformation During Trauma: An Ex Vivo Study
,”
J. Neurosurg. Spine
,
10
(
4
), pp.
315
323
.10.3171/2009.1.SPINE08286
10.
Jones
,
C. F.
,
Kroeker
,
S. G.
,
Cripton
,
P. A.
, and
Hall
,
R. M.
,
2008
, “
The Effect of Cerebrospinal Fluid on the Biomechanics of Spinal Cord: An Ex Vivo Bovine Model Using Bovine and Physical Surrogate Spinal Cord
,”
Spine
(Philadelphia, PA, 1976),
33
(
17
), pp.
E580
E588
.10.1097/BRS.0b013e31817ecc57
11.
Bunegin
,
L.
,
Hung
,
T. K.
, and
Chang
,
G. L.
,
1987
, “
Biomechanics of Spinal Cord Injury
,”
Crit. Care Clin.
,
3
(
3
), pp.
453
470
.
12.
Czeiter
,
E.
,
Pal
,
J.
,
Kovesdi
,
E.
,
Bukovics
,
P.
,
Luckl
,
J.
,
Doczi
,
T.
, and
Buki
,
A.
,
2008
, “
Traumatic Axonal Injury in the Spinal Cord Evoked by Traumatic Brain Injury
,”
J. Neurotrauma
,
25
(
3
), pp.
205
213
.10.1089/neu.2007.0331
13.
Cornish
,
R.
,
Blumbergs
,
P. C.
,
Manavis
,
J.
,
Scott
,
G.
,
Jones
,
N. R.
, and
Reilly
,
P. L.
,
2000
, “
Topography and Severity of Axonal Injury in Human Spinal Cord Trauma Using Amyloid Precursor Protein as a Marker of Axonal Injury
,”
Spine
(Phila Pa 1976),
25
(
10
), pp.
1227
1233
.10.1097/00007632-200005150-00005
14.
Shannon
,
P.
,
Smith
,
C. R.
,
Deck
,
J.
,
Ang
,
L. C.
,
Ho
,
M.
, and
Becker
,
L.
,
1998
, “
Axonal Injury and the Neuropathology of Shaken Baby Syndrome
,”
Acta Neuropathol. (Berlin)
,
95
(
6
), pp.
625
631
.10.1007/s004010050849
15.
Stalhammar
,
D.
,
Galinat
,
B. J.
,
Allen
,
A. M.
,
Becker
,
D. P.
,
Stonnington
,
H. H.
, and
Hayes
,
R. L.
,
1987
, “
A New Model of Concussive Brain Injury in the Cat Produced by Extradural Fluid Volume Loading: I. Biomechanical Properties
,”
Brain Inj.
,
1
(
1
), pp.
73
91
.10.3109/02699058709034448
16.
Saljo
,
A.
,
Arrhen
,
F.
,
Bolouri
,
H.
,
Mayorga
,
M.
, and
Hamberger
,
A.
,
2008
, “
Neuropathology and Pressure in the Pig Brain Resulting from Low-Impulse Noise Exposure
,”
J. Neurotrauma
,
25
(
12
), pp.
1397
1406
.10.1089/neu.2008.0602
17.
Shepard
,
S. R.
,
Ghajar
,
J. B.
,
Giannuzzi
,
R.
,
Kupferman
,
S.
, and
Hariri
,
R. J.
,
1991
, “
Fluid Percussion Barotrauma Chamber: A New In Vitro Model for Traumatic Brain Injury
,”
J. Surg. Res.
,
51
(
5
), pp.
417
424
.10.1016/0022-4804(91)90144-B
18.
Albin
,
M. S.
,
Hung
,
T. K.
,
Brown
,
T. D.
,
Jannetta
,
P. J.
,
Bunegin
,
L.
, and
Albin
,
R. L.
,
1975
, “
Experimental Spinal Cord Injury Biomechanics
,”
Neuroscience Abstracts
,
1
, p.
697
.
19.
Wennerstrand
,
J.
,
Jonsson
,
A.
, and
Arvebo
,
E.
,
1978
, “
Mechanical and Histological Effects of Transverse Impact on the Canine Spinal Cord
,”
J. Biomech.
,
11
(
6–7
), pp.
315
331
.10.1016/0021-9290(78)90065-9
20.
Kodama
,
T.
,
Hamblin
,
M. R.
, and
Doukas
,
A. G.
,
2000
, “
Cytoplasmic Molecular Delivery With Shock Waves: Importance of Impulse
,”
Biophys. J.
,
79
(
4
), pp.
1821
1832
.10.1016/S0006-3495(00)76432-0
21.
Jones
,
C. F.
,
Lee
,
J. H.
,
Kwon
,
B. K.
, and
Cripton
,
P. A.
,
2012
, “
Development of a Large-Animal Model to Measure Dynamic Cerebrospinal Fluid Pressure During Spinal Cord Injury
,”
J. Neurosurg. Spine
,
16
(
6
), pp.
624
635
.10.3171/2012.3.SPINE11970
22.
Panjabi
,
M. M.
,
Kifune
,
M.
,
Wen
,
L.
,
Arand
,
M.
,
Oxland
,
T. R.
,
Lin
,
R. M.
,
Yoon
,
W. S.
, and
Vasavada
,
A.
,
1995
, “
Dynamic Canal Encroachment During Thoracolumbar Burst Fractures
,”
J. Spinal Disord.
,
8
(
1
), pp.
39
48
.10.1097/00002517-199502000-00006
23.
Hall
,
R. M.
,
Oakland
,
R. J.
,
Wilcox
,
R. K.
, and
Barton
,
D. C.
,
2006
, “
Spinal Cord-Fragment Interactions Following Burst Fracture: An In Vitro Model
,”
J. Neurosurg. Spine
,
5
, pp.
243
250
.10.3171/spi.2006.5.3.243
24.
Saljo
,
A.
,
Svensson
,
B.
,
Mayorga
,
M.
,
Hamberger
,
A.
, and
Bolouri
,
H.
,
2009
, “
Low Levels of Blast Raises Intracranial Pressure and Impairs Cognitive Function in Rats
,”
J. Neurotrauma
,
268
(
8
), pp.
1345
1352
.10.1089/neu.2008.0856
25.
Krave
,
U.
,
Hojer
,
S.
, and
Hansson
,
H. A.
,
2005
, “
Transient, Powerful Pressures are Generated in the Brain by a Rotational Acceleration Impulse to the Head
,”
Eur. J. Neurosci.
,
21
(
10
), pp.
2876
2882
.10.1111/j.1460-9568.2005.04115.x
26.
Clausen
,
F.
, and
Hillered
,
L.
,
2005
, “
Intracranial Pressure Changes During Fluid Percussion, Controlled Cortical Impact and Weight Drop Injury in Rats
,”
Acta Neurochir. (Wien)
,
147
(
7
), pp.
775
780
; discussion p. 780.10.1007/s00701-005-0550-2
27.
Rabchevsky
,
A. G.
,
Fugaccia
,
I.
,
Sullivan
,
P. G.
, and
Scheff
,
S. W.
,
2001
, “
Cyclosporin a Treatment Following Spinal Cord Injury to the Rat: Behavioral Effects and Stereological Assessment of Tissue Sparing
,”
J. Neurotrauma
,
18
(
5
), pp.
513
522
.10.1089/089771501300227314
28.
Bouguet
,
J.-Y.
,
2004
, “
Camera Calibration Toolbox for Matlab (software)
,” California Institute of Technology, Pasadena, http://www.vision.caltech.edu/bouguetj/calib_doc/
29.
Carlson
,
G. D.
,
Oliff
,
H. S.
,
Gorden
,
C.
,
Smith
,
J.
, and
Anderson
,
P. A.
,
2003
, “
Cerebral Spinal Fluid Pressure: Effects of Body Position and Lumbar Subarachnoid Drainage in a Canine Model
,”
Spine
,
28
(
2
), pp.
119
122
.10.1097/00007632-200301150-00005
30.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
Cusick
,
J. F.
, and
Sances
, Jr.,
A.
,
1995
, “
Cervical Spinal Cord Injury Using Biomechanical Experimentation
,”
39th Annual Proceedings of the Association for the Advancement of Automotive Medicine, Association for the Advancement of Automotive Medicine
,
Des Plaines, Illinois, USA, Chicago, IL
.
31.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Maiman
,
D. J.
, and
Sances
,
A. J.
,
1995
, “
Cervical Spinal Bony Injury and the Potential for Cord Injury
,”
5th Symposium on Injury Prevention Through Biomechanics
,
M. J.
Grimm
, ed.,
Detroit
, pp.
161
169
.
32.
Greenfield
,
J. C.
, Jr.
,
Rembert
,
J. C.
, and
Tindall
,
G. T.
,
1984
, “
Transient Changes in Cerebral Vascular Resistance During the Valsalva Maneuver in Man
,”
Stroke
,
15
(
1
), pp.
76
79
.10.1161/01.STR.15.1.76
33.
Williams
,
B.
,
1981
, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. I. Technique, Physiology, and Normal Results
,”
Acta Neurochir. (Wien)
,
58
(
3-4
), pp.
167
185
.10.1007/BF01407124
34.
Chavko
,
M.
,
Koller
,
W. A.
,
Prusaczyk
,
W. K.
, and
McCarron
,
R. M.
,
2007
, “
Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain
,”
J. Neurosci. Methods
,
159
(
2
), pp.
277
281
.10.1016/j.jneumeth.2006.07.018
35.
Bauman
,
R. A.
,
Ling
,
G.
,
Tong
,
L.
,
Januszkiewicz
,
A.
,
Agoston
,
D.
,
Delanerolle
,
N.
,
Kim
,
Y.
,
Ritzel
,
D.
,
Bell
,
R.
,
Ecklund
,
J.
,
Armonda
,
R.
,
Bandak
,
F.
, and
Parks
,
S.
,
2009
, “
An Introductory Characterization of a Combat-Casualty-Care Relevant Swine Model of Closed Head Injury Resulting From Exposure to Explosive Blast
,”
J. Neurotrauma
,
26
(
6
), pp.
841
860
.10.1089/neu.2008.0898
36.
Sullivan
,
H. G.
,
Martinez
,
J.
,
Becker
,
D. P.
,
Miller
,
J. D.
,
Griffith
,
R.
, and
Wist
,
A. O.
,
1976
, “
Fluid-Percussion Model of Mechanical Brain Injury in the Cat
,”
J. Neurosurg.
,
45
(
5
), pp.
521
534
.
37.
Moochhala
,
S. M.
,
Md
,
S.
,
Lu
,
J.
,
Teng
,
C. H.
, and
Greengrass
,
C.
,
2004
, “
Neuroprotective Role of Aminoguanidine in Behavioral Changes After Blast Injury
,”
J. Trauma
,
56
(
2
), pp.
393
403
.10.1097/01.TA.0000066181.50879.7A
38.
Kaur
,
C.
,
Singh
,
J.
,
Lim
,
M. K.
,
Ng
,
B. L.
,
Yap
,
E. P.
, and
Ling
,
E. A.
,
1995
, “
The Response of Neurons and Microglia to Blast Injury in the Rat Brain
,”
Neuropathol. Appl. Neurobiol.
,
21
(
5
), pp.
369
377
.10.1111/j.1365-2990.1995.tb01073.x
39.
Saljo
,
A.
,
Bao
,
F.
,
Haglid
,
K. G.
, and
Hansson
,
H. A.
,
2000
, “
Blast Exposure Causes Redistribution of Phosphorylated Neurofilament Subunits in Neurons of the Adult Rat Brain
,”
J. Neurotrauma
,
17
(
8
), pp.
719
726
.10.1089/089771500415454
40.
Saljo
,
A.
,
Bao
,
F.
,
Hamberger
,
A.
,
Haglid
,
K. G.
, and
Hansson
,
H. A.
,
2001
, “
Exposure to Short-Lasting Impulse Noise Causes Microglial and Astroglial Cell Activation in the Adult Rat Brain
,”
Pathophysiology
,
8
(
2
), pp.
105
111
.10.1016/S0928-4680(01)00067-0
41.
Saljo
,
A.
,
Bao
,
F.
,
Jingshan
,
S.
,
Hamberger
,
A.
,
Hansson
,
H. A.
, and
Haglid
,
K. G.
,
2002
, “
Exposure to Short-Lasting Impulse Noise Causes Neuronal C-Jun Expression and Induction of Apoptosis in the Adult Rat Brain
,”
J. Neurotrauma
,
19
(
8
), pp.
985
991
.10.1089/089771502320317131
42.
Saljo
,
A.
,
Bao
,
F.
,
Shi
,
J.
,
Hamberger
,
A.
,
Hansson
,
H. A.
, and
Haglid
,
K. G.
,
2002
, “
Expression of c-Fos and c-Myc and Deposition of beta-APP in Neurons in the Adult Rat Brain as a Result of Exposure to Short-Lasting Impulse Noise
,”
J. Neurotrauma
,
19
(
3
), pp.
379
385
.10.1089/089771502753594945
43.
Svetlov
,
S. I.
,
Prima
,
V.
,
Kirk
,
D. R.
,
Gutierrez
,
H.
,
Curley
,
K. C.
,
Hayes
,
R. L.
, and
Wang
,
K. K.
,
2010
, “
Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast Overpressure Exposure
,”
J. Trauma
,
69
(
4
), pp.
795
804
.10.1097/TA.0b013e3181bbd885
44.
Kato
,
K.
,
Fujimura
,
M.
,
Nakagawa
,
A.
,
Saito
,
A.
,
Ohki
,
T.
,
Takayama
,
K.
, and
Tominaga
,
T.
,
2007
, “
Pressure-Dependent Effect of Shock Waves on Rat Brain: Induction of Neuronal Apoptosis Mediated by a Caspase-Dependent Pathway
,”
J. Neurosurg.
,
106
(
4
), pp.
667
676
.10.3171/jns.2007.106.4.667
45.
Petras
,
J. M.
,
Bauman
,
R. A.
, and
Elsayed
,
N. M.
,
1997
, “
Visual System Degeneration Induced by Blast Overpressure
,”
Toxicology
,
121
(
1
), pp.
41
49
.10.1016/S0300-483X(97)03654-8
46.
Walter
,
B.
,
Bauer
,
R.
,
Fritz
,
H.
,
Jochum
,
T.
,
Wunder
,
L.
, and
Zwiener
,
U.
,
1999
, “
Evaluation of Micro Tip Pressure Transducers for the Measurement of Intracerebral Pressure Transients Induced by Fluid Percussion
,”
Exp. Toxicol. Pathol.
,
51
(
2
), pp.
124
129
.10.1016/S0940-2993(99)80085-2
47.
McIntosh
,
T. K.
,
Vink
,
R.
,
Noble
,
L.
,
Yamakami
,
I.
,
Fernyak
,
S.
,
Soares
,
H.
, and
Faden
,
A. L.
,
1989
, “
Traumatic Brain Injury in the Rat: Characterization of a Lateral Fluid-Percussion Model
,”
Neuroscience
,
28
(
1
), pp.
233
244
.10.1016/0306-4522(89)90247-9
48.
Hayes
,
R. L.
,
Stalhammar
,
D.
,
Povlishock
,
J. T.
,
Allen
,
A. M.
,
Galinat
,
B. J.
,
Becker
,
D. P.
, and
Stonnington
,
H. H.
,
1987
, “
A New Model of Concussive Brain Injury in the Cat Produced by Extradural Fluid Volume Loading: II. Physiological and Neuropathological Observations
,”
Brain Inj.
,
1
(
1
), pp.
93
112
.10.3109/02699058709034449
49.
Rinder
,
L.
,
1969
, “
Concussive Response and Intracranial Pressure Changes at Sudden Extradural Fluid Volume Input in Rabbits
,”
Acta Physiol. Scand.
,
76
(
3
), pp.
352
360
.10.1111/j.1748-1716.1969.tb04478.x
50.
Suneson
,
A.
,
Hansson
,
H. A.
,
Lycke
,
E.
, and
Seeman
,
T.
,
1989
, “
Pressure Wave Injuries to Rat Dorsal Root Ganglion Cells in Culture Caused by High-Energy Missiles
,”
J. Trauma
,
29
(
1
), pp.
10
18
.10.1097/00005373-198901000-00003
51.
Dohrmann
,
G. J.
, and
Panjabi
,
M. M.
,
1976
, “
Spinal Cord Deformation Velocity, Impulse, and Energy Related to Lesion Volume in ‘Standardised’ Trauma
,”
Surg. Forum
,
27
(
62
), pp.
466
468
.
52.
Molt
,
J. T.
,
Nelson
,
L. R.
,
Poulos
,
D. A.
, and
Bourke
,
R. S.
,
1979
, “
Analysis and Measurement of Some Sources of Variability in Experimental Spinal Cord Trauma
,”
J. Neurosurg.
,
50
(
6
), pp.
784
791
.10.3171/jns.1979.50.6.0784
53.
Akeson
,
J.
,
Bjorkman
,
S.
,
Messeter
,
K.
,
Rosen
,
I.
, and
Helfer
,
M.
,
1993
, “
Cerebral Pharmacodynamics of Anaesthetic and Subanaesthetic Doses of Ketamine in the Normoventilated Pig
,”
Acta Anaesthesiol. Scand.
,
37
(
2
), pp.
211
218
.10.1111/j.1399-6576.1993.tb03703.x
54.
Roald
,
O. K.
,
Forsman
,
M.
, and
Steen
,
P. A.
,
1989
, “
The Effects of Prolonged Isoflurane Anaesthesia on Cerebral Blood Flow and Metabolism in the Dog
,”
Acta Anaesthesiol. Scand.
,
33
(
3
), pp.
210
213
.10.1111/j.1399-6576.1989.tb02892.x
55.
Pfenninger
,
E.
,
Grunert
,
A.
,
Bowdler
,
I.
, and
Kilian
,
J.
,
1985
, “
The Effect of Ketamine on Intracranial Pressure During Haemorrhagic Shock Under the Conditions of Both Spontaneous Breathing and Controlled Ventilation
,”
Acta Neurochir. (Wien)
,
78
(
3–4
), pp.
113
118
.10.1007/BF01808689
56.
Grum
,
D. F.
, and
Svensson
,
L. G.
,
1991
, “
Changes in Cerebrospinal Fluid Pressure and Spinal Cord Perfusion Pressure Prior to Cross-Clamping of the Thoracic Aorta in Humans
,”
J. Cardiothorac. Vasc. Anesth.
,
5
(
4
), pp.
331
336
.10.1016/1053-0770(91)90155-M
57.
Bozeman
,
W. P.
, and
Idris
,
A. H.
,
2005
, “
Intracranial Pressure Changes During Rapid Sequence Intubation: A Swine Model
,”
J. Trauma
,
58
(
2
), pp.
278
283
.10.1097/01.TA.0000152536.71932.85
58.
Yasuda
,
N.
,
Targ
,
A. G.
,
Eger
,
E. I.
, 2nd
,
Johnson
,
B. H.
, and
Weiskopf
,
R. B.
,
1990
, “
Pharmacokinetics of Desflurane, Sevoflurane, Isoflurane, and Halothane in Pigs
,”
Anesth. Analg.
,
71
(
4
), pp.
340
348
.10.1213/00000539-199010000-00004
59.
Klarica
,
M.
,
Rados
,
M.
,
Draganic
,
P.
,
Erceg
,
G.
,
Oreskovic
,
D.
,
Marakovic
,
J.
, and
Bulat
,
M.
,
2006
, “
Effect of Head Position on Cerebrospinal Fluid Pressure in Cats: Comparison With Artificial Model
,”
Croat. Med. J.
,
47
(
2
), pp.
233
238
.
60.
Whiteley
,
W.
,
Al-Shahi
,
R.
,
Warlow
,
C. P.
,
Zeidler
,
M.
, and
Lueck
,
C. J.
,
2006
, “
CSF Opening Pressure: Reference Interval and the Effect of Body Mass Index
,”
Neurology
,
67
(
9
), pp.
1690
1691
.10.1212/01.wnl.0000242704.60275.e9
61.
Eidlitz-Markus
,
T.
,
Stiebel-Kalish
,
H.
,
Rubin
,
Y.
, and
Shuper
,
A.
,
2005
, “
CSF Pressure Measurement During Anesthesia: An Unreliable Technique
,”
Paediatr. Anaesth.
,
15
(
12
), pp.
1078
1082
.
You do not currently have access to this content.