Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.

References

References
1.
Hatsukami
,
T. S.
,
Ross
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
,
2000
, “
Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging
,”
Circulation
,
102
(
9
), pp.
959
964
.10.1161/01.CIR.102.9.959
2.
Lindstedt
,
K. A.
, and
Kovanen
,
P. T.
,
2004
, “
Proteolysis of Pericellular Matrix: A Process Linking Inflammation to Plaque Destabilization and Rupture
,”
Arterioscler Thromb. Vasc. Biol.
,
24
(
12
), pp.
2205
2206
.10.1161/01.ATV.0000149753.74793.88
3.
Virmani
,
R.
,
Burke
,
A. P.
,
Kolodgie
,
F. D.
, and
Farb
,
A.
,
2002
, “
Vulnerable Plaque: The Pathology of Unstable Coronary Lesions
,”
J. Interv. Cardiol.
,
15
(
6
), pp.
439
446
.10.1111/j.1540-8183.2002.tb01087.x
4.
Fisher
,
M.
,
Paganini-Hill
,
A.
,
Martin
,
A.
,
Cosgrove
,
M.
,
Toole
,
J. F.
,
Barnett
,
H. J.
, and
Norris
,
J.
,
2005
, “
Carotid Plaque Pathology: Thrombosis, Ulceration, and Stroke Pathogenesis
,”
Stroke
,
36
(
2
), pp.
253
257
.10.1161/01.STR.0000152336.71224.21
5.
Richardson
,
P. D.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.10.1114/1.1482781
6.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
De Korte
,
C. L.
,
Aikawa
,
M.
,
Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II
,”
Circulation
,
108
(
15
), pp.
1772
1778
.10.1161/01.CIR.0000087481.55887.C9
7.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
De Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
,
108
(
14
), pp.
1664
1672
.10.1161/01.CIR.0000087480.94275.97
8.
Li
,
Z. Y.
,
Howarth
,
S. P.
,
Tang
,
T.
, and
Gillard
,
J. H.
,
2006
, “
How Critical Is Fibrous Cap Thickness to Carotid Plaque Stability? A Flow-Plaque Interaction Model
,”
Stroke
,
37
(
5
), pp.
1195
1199
.10.1161/01.STR.0000217331.61083.3b
9.
Zhao
,
S. Z.
,
Ariff
,
B.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
, and
Xu
,
X. Y.
,
2002
, “
Inter-Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans
,”
J Biomech
,
35
(
10
), pp.
1367
1377
.10.1016/S0021-9290(02)00185-9
10.
Rohde
,
L. E.
, and
Lee
,
R. T.
,
2003
, “
Pathophysiology of Atherosclerotic Plaque Development and Rupture: An Overview
,”
Semin. Vasc. Med.
,
3
(
4
), pp.
347
354
.10.1055/s-2004-815692
11.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
(
4
), pp.
1179
1187
.10.1161/01.CIR.87.4.1179
12.
Lee
,
R. T.
,
2000
, “
Atherosclerotic Lesion Mechanics Versus Biology
,”
Z. Kardiol.
,
89
(
Suppl 2
), pp.
80
84
.10.1007/s003920070104
13.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
Jm
,
U. K.-I.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L.
, and
Gillard
,
J. H.
,
2006
, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
,
39
(
14
), pp.
2611
2622
.10.1016/j.jbiomech.2005.08.022
14.
Finet
,
G.
,
Ohayon
,
J.
, and
Rioufol
,
G.
,
2004
, “
Biomechanical Interaction Between Cap Thickness, Lipid Core Composition and Blood Pressure in Vulnerable Coronary Plaque: Impact on Stability or Instability
,”
Coron. Artery Dis.
,
15
(
1
), pp.
13
20
.10.1097/00019501-200402000-00003
15.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ Res
,
71
(
4
), pp.
850
858
.10.1161/01.RES.71.4.850
16.
Lee
,
R. T.
,
Loree
,
H. M.
,
Cheng
,
G. C.
,
Lieberman
,
E. H.
,
Jaramillo
,
N.
, and
Schoen
,
F. J.
,
1993
, “
Computational Structural Analysis Based on Intravascular Ultrasound Imaging Before In Vitro Angioplasty: Prediction of Plaque Fracture Locations
,”
J. Am. Coll. Cardiol.
,
21
(
3
), pp.
777
782
.10.1016/0735-1097(93)90112-E
17.
Huang
,
X.
,
Yang
,
C.
,
Canton
,
G.
,
Ferguson
,
M.
,
Yuan
,
C.
, and
Tang
,
D.
,
2012
, “
Quantifying Effect of Intraplaque Hemorrhage on Critical Plaque Wall Stress in Human Atherosclerotic Plaques Using Three-Dimensional Fluid-Structure Interaction Models
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
121004
.10.1115/1.4007954
18.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Canton
,
G.
,
Bach
,
R. G.
,
Hatsukami
,
T. S.
,
Wang
,
L.
,
Yang
,
D.
,
Billiar
,
K. L.
, and
Yuan
,
C.
,
2013
, “
Image-Based Modeling and Precision Medicine: Patient-Specific Carotid and Coronary Plaque Assessment and Predictions
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
643
651
.10.1109/TBME.2013.2242891
19.
Liu
,
H.
,
Canton
,
G.
,
Yuan
,
C.
,
Yang
,
C.
,
Billiar
,
K.
,
Teng
,
Z.
,
Hoffman
,
A. H.
, and
Tang
,
D.
,
2012
, “
Using In Vivo Cine and 3D Multi-Contrast MRI to Determine Human Atherosclerotic Carotid Artery Material Properties and Circumferential Shrinkage Rate and Their Impact on Stress/Strain Predictions
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011008
.10.1115/1.4005529
20.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
,
2001
, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
,
103
(
8
), pp.
1051
1056
.10.1161/01.CIR.103.8.1051
21.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
,
2004
, “
3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.10.1023/B:ABME.0000032457.10191.e0
22.
Imoto
,
K.
,
Hiro
,
T.
,
Fujii
,
T.
,
Murashige
,
A.
,
Fukumoto
,
Y.
,
Hashimoto
,
G.
,
Okamura
,
T.
,
Yamada
,
J.
,
Mori
,
K.
, and
Matsuzaki
,
M.
,
2005
, “
Longitudinal Structural Determinants of Atherosclerotic Plaque Vulnerability: A Computational Analysis of Stress Distribution Using Vessel Models and Three-Dimensional Intravascular Ultrasound Imaging
,”
J. Am. Coll. Cardiol.
,
46
(
8
), pp.
1507
1515
.10.1016/j.jacc.2005.06.069
23.
Bank
,
A. J.
,
Versluis
,
A.
,
Dodge
,
S. M.
, and
Douglas
,
W. H.
,
2000
, “
Atherosclerotic Plaque Rupture: A Fatigue Process?
,”
Med Hypotheses
,
55
(
6
), pp.
480
4
.10.1054/mehy.2000.1096
24.
Versluis
,
A.
,
Bank
,
A. J.
, and
Douglas
,
W. H.
,
2006
, “
Fatigue and Plaque Rupture in Myocardial Infarction
,”
J. Biomech.
,
39
(
2
), pp.
339
347
.10.1016/j.jbiomech.2004.10.041
25.
Stehbens
,
W. E.
,
2002
, “
The Fatigue Hypothesis of Plaque Rupture and Atherosclerosis
,”
Med. Hypotheses
,
58
(
4
), pp.
359
360
.10.1054/mehy.2001.1540
26.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
2nd ed.
,
CRC
,
Boca Raton, FL
.
27.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces. 1. Small-Scale Yielding
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
299
316
.10.1115/1.3173676
28.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “A critical analysis of crack propagation laws,” J. Basic Eng.,
85
, pp. 528–534.
29.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
J. Basic Eng.
,
85
(
4
), pp.
519
525
.10.1115/1.3656897
30.
Barrett
,
S. R.
,
Sutcliffe
,
M. P.
,
Howarth
,
S.
,
Li
,
Z. Y.
, and
Gillard
,
J. H.
,
2009
, “
Experimental Measurement of the Mechanical Properties of Carotid Atherothrombotic Plaque Fibrous Cap
,”
J. Biomech.
,
42
(
11
), pp.
1650
1655
.10.1016/j.jbiomech.2009.04.025
You do not currently have access to this content.