Measures of mean cartilage thickness over predefined regions in the femoral plate using magnetic resonance imaging have provided important insights into the characteristics of knee osteoarthritis (OA), however, this quantification method suffers from the limited ability to detect OA-related differences between knees and loses potentially important information regarding spatial variations in cartilage thickness. The objectives of this study were to develop a new method for analyzing patterns of femoral cartilage thickness and to test the following hypotheses: (1) asymptomatic knees have similar thickness patterns, (2) thickness patterns differ with knee OA, and (3) thickness patterns are more sensitive than mean thicknesses to differences between OA conditions. Bi-orthogonal thickness patterns were extracted from thickness maps of segmented magnetic resonance images in the medial, lateral, and trochlea compartments. Fifty asymptomatic knees were used to develop the method and establish reference asymptomatic patterns. Another subgroup of 20 asymptomatic knees and three subgroups of 20 OA knees each with a Kellgren/Lawrence grade (KLG) of 1, 2, and 3, respectively, were selected for hypotheses testing. The thickness patterns were similar between asymptomatic knees (coefficient of multiple determination between 0.8 and 0.9). The thickness pattern alterations, i.e., the differences between the thickness patterns of an individual knee and reference asymptomatic thickness patterns, increased with increasing OA severity (Kendall correlation between 0.23 and 0.47) and KLG 2 and 3 knees had significantly larger thickness pattern alterations than asymptomatic knees in the three compartments. On average, the number of significant differences detected between the four subgroups was 4.5 times greater with thickness pattern alterations than mean thicknesses. The increase was particularly marked in the medial compartment, where the number of significant differences between subgroups was 10 times greater with thickness pattern alterations than mean thickness measurements. Asymptomatic knees had characteristic regional thickness patterns and these patterns were different in medial OA knees. Assessing the thickness patterns, which account for the spatial variations in cartilage thickness and capture both cartilage thinning and swelling, could enhance the capacity to detect OA-related differences between knees.

References

References
1.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the in Vivo Pathomechanics of Osteoarthritis of the Knee
,”
Ann. Biomed. Eng.
,
32
, pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
2.
Adam
,
C.
,
Eckstein
,
F.
,
Milz
,
S.
, and
Putz
,
R.
,
1998
, “
The Distribution of Cartilage Thickness Within the Joints of the Lower Limb of Elderly Individuals
,”
J. Anat.
,
193
, pp.
203
214
.10.1046/j.1469-7580.1998.19320203.x
3.
Cohen
,
Z. A.
,
Mow
,
V. C.
,
Henry
,
J. H.
,
Levine
,
W. N.
, and
Ateshian
,
G. A.
,
2003
, “
Templates of the Cartilage Layers of the Patellofemoral Joint and Their Use in the Assessment of Osteoarthritis Cartilage Damage
,”
Osteoarthritis Cartilage
,
11
, pp.
569
579
.10.1016/S1063-4584(03)00091-8
4.
Wirth
,
W.
, and
Eckstein
,
F.
,
2008
, “
A Technique for Regional Analysis of Femorotibial Cartilage Thickness Based on Quantitative Magnetic Resonance Imaging
,”
IEEE Trans. Med. Imaging
,
27
, pp.
737
744
.10.1109/TMI.2007.907323
5.
Koo
,
S.
,
Gold
,
G. E.
, and
Andriacchi
,
T. P.
,
2005
, “
Considerations in Measuring Cartilage Thickness Using MRI: Factors Influencing Reproducibility and Accuracy
,”
Osteoarthritis Cartilage
,
13
, pp.
782
789
.10.1016/j.joca.2005.04.013
6.
Eckstein
,
F.
, and
Wirth
,
W.
,
2011
, “
Quantitative Cartilage Imaging in Knee Osteoarthritis
,”
Arthritis
,
2011
,
19
pages.10.1155/2011/475684
7.
Buck
,
R. J.
,
Wyman
,
B. T.
,
Hellio Le Graverand
,
M. P.
,
Wirth
,
W.
, and
Eckstein
,
F.
,
2010
, “
An Efficient Subset of Morphological Measures for Articular Cartilage in the Healthy and Diseased Human Knee
,”
Magn. Reson. Med.
,
63
, pp.
680
690
.10.1002/mrm.22207
8.
Buck
,
R. J.
,
Wyman
,
B. T.
,
Hellio Le Graverand
,
M. P.
,
Hudelmaier
,
M.
,
Wirth
,
W.
, and
Eckstein
,
F.
,
2010
, “
Osteoarthritis May Not be a One-Way-Road of Cartilage Loss—Comparison of Spatial Patterns of Cartilage Change Between Osteoarthritic and Healthy Knees
,”
Osteoarthritis Cartilage
,
18
, pp.
329
335
.10.1016/j.joca.2009.11.009
9.
Pelletier
,
J. P.
,
Raynauld
,
J. P.
,
Berthiaume
,
M. J.
,
Abram
,
F.
,
Choquette
,
D.
,
Haraoui
,
B.
,
Beary
,
J.
,
Cline
,
G. A.
,
Meyer
,
J. M.
, and
Martel-Pelletier
,
J.
,
2007
, “
Risk Factors Associated With the Loss of Cartilage Volume on Weight-Bearing Areas in Knee Osteoarthritis Patients Assessed by Quantitative Magnetic Resonance Imaging: A Longitudinal Study
,”
Arthritis Res. Ther.
,
9
, p.
R74
.10.1186/ar2272
10.
Eckstein
,
F.
,
Cicuttini
,
F.
,
Raynauld
,
J. P.
,
Waterton
,
J. C.
, and
Peterfly
,
C.
,
2006
, “
Magnetic Resonance Imaging (MRI) of Articular Cartilage in the Knee Osteoarthritis (OA): Morphological Assessment
,”
Osteoarthritis Cartilage
,
12
(
Suppl.
), pp.
46
75
.10.1016/j.joca.2006.02.026
11.
Reichenbach
,
S.
,
Yang
,
M.
,
Eckstein
,
F.
,
Niu
,
J.
,
Hunter
,
D. J.
,
McLennan
,
C. E.
,
Guermazi
,
A.
,
Roemer
,
F.
,
Hudelmaier
,
M.
,
Aliabadi
,
P.
, and
Felson
,
D. T.
,
2010
, “
Does Cartilage Volume or Thickness Distinguish Knees With and Without Mild Radiographic Osteoarthritis? The Framingham Study
,”
Ann. Rheum. Dis.
,
69
, pp.
143
149
.10.1136/ard.2008.099200
12.
Hunter
,
D. J.
,
Li
,
L.
,
Zhang
,
Y. Q.
,
Totterman
,
S.
,
Tamez
,
J.
,
Kwohl
,
C. K.
,
Eaton
,
C. B.
,
Hellio Le Graverand
,
M. P.
, and
Beals
,
C. R.
,
2010
, “
Region of Interest Analysis: By Selecting Regions With Denuded Areas Can We Detect Greater Amounts of Change?
,”
Osteoarthritis Cartilage
,
18
, pp.
175
183
.10.1016/j.joca.2009.08.002
13.
Andriacchi
,
T. P.
,
2013
, “
Valgus Alignment and Lateral Compartment Knee OA: A Biomechanical Paradox or New Insight Into Knee OA?
,”
Arthritis Rheum.
,
65
, pp. 310–313.10.1002/art.37724
14.
Forbell
,
R. B.
,
Nevitt
,
M. C.
,
Hudelmaier
,
M.
,
Wirth
,
W.
,
Wyman
,
B. T.
,
Benichou
,
O.
,
Dreher
,
D.
,
Davies
,
R.
,
Lee
,
J. H.
,
Baribaud
,
F.
,
Gimona
,
A.
, and
Eckstein
,
F.
,
2010
, “
Femorotibial Subchondral Bone Area and Regional Cartilage Thickness: A Cross-Sectional Description in Healthy Reference Cases and Various Radiographic Stages of Osteoarthritis in 1,003 Knees From the Osteoarthritis Initiative
,”
Arthritis Care Res.
,
62
, pp.
1612
1623
.10.1002/acr.20262
15.
Eckstein
,
F.
,
Winzheimer
,
M.
,
Hohe
,
J.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2001
, “
Interindividual Variability and Correlation Among Morphological Parameters of Knee Joint Cartilage Plates: Analysis With Three-Dimensional MR Imaging
,”
Osteoarthritis Cartilage
,
9
, pp.
101
111
.10.1053/joca.2000.0365
16.
Eckstein
,
F.
,
Yang
,
M.
,
Guermazi
,
A.
,
Roemer
,
F. W.
,
Hudelmaier
,
M.
,
Picha
,
K.
,
Baribaud
,
F.
,
Wirth.
W.
, and
Felson
,
D. T.
,
2010
, “
Reference Values and Z-scores for Subregional Femorotibial Cartilage Thickness—Results From a Large Population-Based Sample (Framingham) and Comparison With the Non-Exposed Osteoarthritis Initiative Reference Cohort
,”
Osteoarthritis Cartilage
,
18
, pp.
1275
1283
.10.1016/j.joca.2010.07.010
17.
Eckstein
,
F.
,
Gavazzeni
,
A.
,
Sittek
,
H.
,
Haubner
,
M.
,
Lösch
,
A.
,
Milz
,
S.
,
Englmeier
,
K. H.
,
Schulte
,
E.
,
Putz
,
R.
, and
Reiser
,
M.
,
1996
, “
Determination of Knee Joint Cartilage Thickness Using Three-Dimensional Magnetic Resonance Chondro-Crassometry (3D MR-CCM)
,”
Magn. Reson. Med.
,
36
, pp.
256
265
.10.1002/mrm.1910360213
18.
Connolly
,
A.
,
FitzPatrick
,
D.
,
Moulton
,
J.
,
Lee
,
J.
, and
Lerner
,
A.
,
2008
, “
Tibiofemoral Cartilage Thickness Distribution and Its Correlation With Anthropometric Variables
,”
Proc. Inst, Mech. Eng., Part H: J. Eng. Med.
,
222
, pp.
29
39
.10.1243/09544119JEIM306
19.
Li
,
G.
,
Park
,
S. E.
,
Defrate
,
L. E.
,
Schutzer
,
M. E.
,
Ji
,
L.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
The Cartilage Thickness Distribution in the Tibiofemoral Joint and its Correlation With Cartilage-to-Cartilage Contact
,”
Clin. Biomech. (Bristol, Avon)
,
20
, pp.
736
744
.10.1016/j.clinbiomech.2005.04.001
20.
Koo
,
S.
,
Rylander
,
J. H.
, and
Andriacchi
,
T. P.
,
2011
, “
Knee Joint Kinematics During Walking Influences the Spatial Cartilage Thickness Distribution in the Knee
,”
J. Biomech.
,
44
, pp.
1405
1409
.10.1016/j.jbiomech.2010.11.020
21.
Scanlan
,
S. F.
,
Favre
,
J.
, and
Andriacchi
,
T. P.
,
2013
, “
The Relationship Between Peak Knee Extension at Heel-Strike of Walking and the Location of Thickest Femoral Cartilage in ACL Reconstructed and Healthy Contralateral Knees
,”
J. Biomech.
,
46
, pp. 849–854.10.1016/j.jbiomech.2012.12.026
22.
Favre
,
J.
,
Blazek
,
K.
,
Erhart
,
J. C.
, and
Andriacchi
,
T. P.
,
2012
, “
Characterization of the Spatial Cartilage Thickness Distribution on the Distal Femur in Healthy Knees
,”
Proceedings of the Annual Meeting of the Orthopeadic Research Society
,
San-Francisco
,
CA
, pp.
1795
.
23.
Chaudhari
,
A. M. W.
,
Briant
,
P. L.
,
Bevill
,
S. L.
,
Koo
,
S.
, and
Andriacchi
,
T. P.
,
2008
, “
Knee Kinematics, Cartilage Morphology and Osteoarthritis After ACL Injury
,”
Med. Sci. Sports Exercise
,
40
, pp.
215
222
.10.1249/mss.0b013e31815cbb0e
24.
Bevill
,
S. L.
,
Briant
,
P. L.
,
Levenston
,
M. E.
, and
Andriacchi
,
T. P.
,
2009
, “
Central and Peripheral Region Tibial Plateau Chondrocytes Respond Differently to in Vitro Dynamic Compression
,”
Osteoarthritis Cartilage
,
17
, pp.
980
987
.10.1016/j.joca.2008.12.005
25.
Andriacchi
,
T. P.
,
Koo
,
S.
, and
Scanlan
,
S. F.
,
2009
, “
Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee
,”
J. Bone Jt. Surg., Am.
,
91
, pp.
95
101
.10.2106/JBJS.H.01408
26.
Creaby
,
M. W.
,
Wang
,
Y.
,
Bennell
,
K. L.
,
Hinman
,
R. S.
,
Metcalf
,
B. R.
,
Bowles
,
K. A.
, and
Cicuttini
,
F. M.
,
2010
, “
Dynamic Knee Loading is Related to Cartilage Defects and Tibial Plateau Bone Area in Medial Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
18
, pp.
1380
1388
.10.1016/j.joca.2010.08.013
27.
Sharma
,
L.
,
Hurwitz
,
D. E.
,
Thonar
,
E. J.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
,
Kirwan-Mellis
,
G.
, and
Andriacchi
,
T. P.
,
1998
, “
Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheum.
,
41
, pp.
1233
1240
.10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
28.
Favre
,
J.
,
Hayoz
,
M.
,
Erhart-Hledik
,
J. C.
, and
Andriacchi
,
T. P.
,
2012
, “
A Neural Network Model to Predict Knee Adduction Moment During Walking Based on Ground Reaction Force and Anthropometric Measurements
,”
J. Biomech.
,
45
, pp.
692
698
.10.1016/j.jbiomech.2011.11.057
29.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
,
Sato
,
M.
,
Baba
,
H.
, and
Shimada
,
S.
,
2002
, “
Dynamic Load at Baseline Can Predict Radiographic Disease Severity in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
61
, pp.
617
622
.10.1136/ard.61.7.617
30.
Wirth
,
W.
,
Benichou
,
O.
,
Kwoh
,
C. K.
,
Guermazi
,
A.
,
Hunter
,
D.
,
Putz
,
R.
, and
Eckstein
,
F.
,
2010
, “
Spatial Patterns of Cartilage Loss in the Medial Femoral Condyle in Osteoarthritic Knees: Data From the Osteoarthritis Initiative
,”
Magn. Reson. Med.
,
63
, pp.
574
581
.10.1002/mrm.22194
31.
Ahmad
,
C. S.
,
Cohen
,
Z. A.
,
Levine
,
W. N.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2001
, “
Biomechanical and Topographic Considerations for Autologous Osteochondral Grafting in the Knee
,”
Am. J. Sports Med.
,
29
, pp.
201
206
.
32.
Gulati
,
A.
,
Chau
,
R.
,
Beard
,
D. J.
,
Price
,
A. J.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2009
, “
Localization of the Full-Thickness Cartilage Lesions in Medial and Lateral Unicompartmental Knee Osteoarthritis
,”
J. Orthop. Res.
,
27
, pp.
1339
1346
.10.1002/jor.20880
33.
Kellgren
,
J. H.
, and
Lawrence
,
J. S.
,
1957
, “
Radiological Assessment of Osteoarthritis
,”
Ann. Rheum. Dis.
,
16
, pp.
494
502
.10.1136/ard.16.4.494
34.
Kauffmann
,
C.
,
Gravel
,
P.
,
Godbout
,
B.
,
Gravel
,
A.
,
Beaudoin
,
G.
,
Raynauld
,
J. P.
,
Martel-Pelletier
,
J.
,
Pelletier
,
J. P.
, and
de Guise
,
J. A.
,
2003
, “
Computer-Aided Method for Quantification of Cartilage Thickness and Volume Changes Using MRI: Validation Study Using a Synthetic Model
,”
IEEE Trans. Biomed. Eng.
,
50
, pp.
978
988
.10.1109/TBME.2003.814539
35.
Neter
,
J.
,
Wasserman
,
W.
, and
Kunter
,
M. H.
,
1985
,
Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs
, Irwin series in statistics, Irwin, ed.,
Chicago
,
IL
.
36.
Ahlback
,
S.
,
1968
, “
Osteoarthrosis of the Knee. A Radiographic Investigation
,”
Acta Radiologica Diagnosis
,
277
(
Suppl.
), pp.
70
72
.
37.
Hellio Le Graverand
,
M. P.
,
Buck
,
R. J.
,
Wyman
,
B. T.
,
Vignon
,
E.
,
Mazzuca
,
S. A.
,
Brandt
,
K. D.
,
Piperno
,
M.
,
Charles
,
H. C.
,
Hudelmaier
,
M.
,
Hunter
,
D. J.
,
Jackson
,
C.
,
Kraus
,
V. B.
,
Link
,
M. T.
,
Majumdar
,
S.
,
Prasad
,
P. V.
,
Schnitzer
,
T. J.
,
Vaz
,
A.
,
Wirth
,
W.
,
Eckstein
,
F.
,
2009
, “
Subregional Femoral Cartilage Morphology in Women—Comparison Between Healthy Controls and Participants With Different Grades of Radiographic Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
17
, pp.
1177
1185
.10.1016/j.joca.2009.03.008
38.
Eckstein
,
F.
,
Nevitt
,
M.
,
Gimona
,
A.
,
Picha
,
K.
,
Lee
,
J. H.
,
Davies
,
R. Y.
,
Dreher
,
D.
,
Benichou
,
O.
,
Hellio Le Graverand
,
M. P.
,
Hudelmaier
,
M.
,
Maschek
,
S.
, and
Wirth
,
W.
,
2011
, “
Rates of Change and Sensitivity to Change in Cartilage Morphology in Healthy Knees and in Knees With Mild, Moderate, and End-Stage Radiographic Osteoarthritis: Results From 831 Participants From the Osteoarthritis Initiative
,”
Arthritis Care Res.
,
63
, pp.
311
319
.10.1002/art.30414
You do not currently have access to this content.