Native aortic valve cusps are composed of collagen fibers embedded in their layers. Each valve cusp has its own distinctive fiber alignment with varying orientations and sizes of its fiber bundles. However, prior mechanical behavior models have not been able to account for the valve-specific collagen fiber networks (CFN) or for their differences between the cusps. This study investigates the influence of this asymmetry on the hemodynamics by employing two fully coupled fluid-structure interaction (FSI) models, one with asymmetric-mapped CFN from measurements of porcine valve and the other with simplified-symmetric CFN. The FSI models are based on coupled structural and fluid dynamic solvers. The partitioned solver has nonconformal meshes and the flow is modeled by employing the Eulerian approach. The collagen in the CFNs, the surrounding elastin matrix, and the aortic sinus tissues have hyperelastic mechanical behavior. The coaptation is modeled with a master-slave contact algorithm. A full cardiac cycle is simulated by imposing the same physiological blood pressure at the upstream and downstream boundaries for both models. The mapped case showed highly asymmetric valve kinematics and hemodynamics even though there were only small differences between the opening areas and cardiac outputs of the two cases. The regions with a less dense fiber network are more prone to damage since they are subjected to higher principal stress in the tissues and a higher level of flow shear stress. This asymmetric flow leeward of the valve might damage not only the valve itself but also the ascending aorta.

References

References
1.
Yoganathan
,
A. P.
,
Lemmon
,
J. D.
, and
Ellis
,
J. T.
,
2000
, “
Heart Valve Dynamics
,”
The Biomedical Engineering Handbook
,
Bronzino
,
J. D.
, ed.,
CRC Press and Springer
,
Boca Raton, FL and Heidelberg, Germany
.
2.
Thubrikar
,
M.
,
1990
,
The Aortic Valve
,
CRC Press
,
Boca Raton, FL
.
3.
Missirlis
,
Y. F.
, and
Chong
,
M.
,
1978
, “
Aortic Valve Mechanics—Part 1: Material Properties of Natural Porcine Aortic Valves
,”
J. Bioeng.
,
2
, pp.
287
300
. Available at http://www.ncbi.nlm.nih.gov/pubmed/711721
4.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1998
, “
The Aortic Valve Microstructure: Effects of Transvalvular Pressure
,”
J. Biomed. Mater. Res.
,
41
, pp.
131
141
.10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q
5.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
,
2002
, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
, pp.
1221
1233
.10.1114/1.1527047
6.
Robinson
,
P. S.
,
Johnson
,
S. L.
,
Evans
,
M. C.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
2008
, “
Functional Tissue-Engineered Valves From Cell-Remodeled Fibrin With Commissural Alignment of Cell-Produced Collagen
,”
Tissue Eng. A
,
14
, pp.
83
95
.10.1089/ten.a.2007.0148
7.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
,
1998
, “
Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry
,”
Ann. Biomed. Eng.
,
26
, pp.
534
545
.10.1114/1.122
8.
Katayama
,
S.
,
Umetani
,
N.
,
Sugiura
,
S.
, and
Hisada
,
T.
,
2008
, “
The Sinus of Valsalva Relieves Abnormal Stress on Aortic Valve Leaflets by Facilitating Smooth Closure
,”
J. Thorac. Cardiovasc. Surg.
,
136
, pp.
1528
1535
.10.1016/j.jtcvs.2008.05.054
9.
Sun
,
W.
, and
Sacks
,
M. S.
,
2005
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
4
, pp.
190
199
.10.1007/s10237-005-0075-x
10.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
11.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
,
2003
, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
ASME J. Biomech. Eng.
,
125
, pp.
372
380
.10.1115/1.1572518
12.
Kim
,
H. S.
,
2009
, Nonlinear Multi-Scale Anisotropic Material and Structural Models for Prosthetic and Native Aortic Heart Valves, Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
13.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.10.1023/A:1010835316564
14.
Haj-Ali
,
R.
, and
Aboudi
,
J.
,
2009
, “
Nonlinear Micromechanical Formulation of the High Fidelity Generalized Method of Cells
,”
Int. J. Solids Struct.
,
46
, pp.
2577
2592
.10.1016/j.ijsolstr.2009.02.004
15.
Weinberg
,
E. J.
, and
Mofrad
,
M. R. K.
,
2007
, “
Transient, Three-Dimensional, Multiscale Simulations of the Human Aortic Valve
,”
Cardiovasc. Eng.
,
7
, pp.
140
155
.10.1007/s10558-007-9038-4
16.
De Hart
,
J.
,
Baaijens
,
F. P. T.
,
Peters
,
G. W. M.
, and
Schreurs
,
P. J. G.
,
2003
, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
,
36
, pp.
699
712
.10.1016/S0021-9290(02)00448-7
17.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
,
2005
, “
Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
,
127
, pp.
329
336
.10.1115/1.1865187
18.
Conti
,
C. A.
,
Della Corte
,
A.
,
Votta
,
E.
,
Del
Viscovo
,
L.
,
Bancone
,
C.
,
De
Santo
,
L. S.
, and
Redaelli
,
A.
,
2010
, “
Biomechanical Implications of the Congenital Bicuspid Aortic Valve: A Finite Element Study of Aortic Root Function From In Vivo Data
,”
J. Thorac. Cardiovasc. Surg.
,
140
, pp.
890
896
.10.1016/j.jtcvs.2010.01.016
19.
Jermihov
,
P.
,
Jia
,
L.
,
Sacks
,
M. S.
,
Gorman
,
R.
,
Gorman
,
J.
, and
Chandran
,
K.
,
2011
, “
Effect of Geometry on the Leaflet Stresses in Simulated Models of Congenital Bicuspid Aortic Valves
,”
Cardiovasc. Eng. Technol.
,
2
, pp.
48
56
.10.1007/s13239-011-0035-9
20.
Haj-Ali
,
R.
,
Marom
,
G.
,
Ben Zekry
,
S.
,
Rosenfeld
,
M.
, and
Raanani
,
E.
,
2012
, “
A General Three-Dimensional Parametric Geometry of the Native Aortic Valve and Root for Biomechanical Modeling
,”
J. Biomech.
,
45
, pp.
2392
2397
.10.1016/j.jbiomech.2012.07.017
21.
Marom
,
G.
,
Haj-Ali
,
R.
,
Raanani
,
E.
,
Schäfers
,
H. J.
, and
Rosenfeld
,
M.
,
2012
, “
A Fluid-Structure Interaction Model of Coaptation in Fully Compliant Aortic Valves
,”
Med. Biol. Eng. Comput.
,
50
, pp.
173
182
.10.1007/s11517-011-0849-5
22.
Chen
,
H.
,
Liu
,
Y.
,
Zhao
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2011
, “
A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue
,”
J. Mech. Phys. Solids
,
59
, pp.
1823
1837
.10.1016/j.jmps.2011.05.012
23.
Gundiah
,
N.
,
Kam
,
K.
,
Matthews
,
P. B.
,
Guccione
,
J.
,
Dwyer
,
H. A.
,
Saloner
,
D.
,
Chuter
,
T. A.
,
Guy
,
T. S.
,
Ratcliffe
,
M. B.
, and
Tseng
,
E. E.
,
2008
, “
Asymmetric Mechanical Properties of Porcine Aortic Sinuses
,”
Ann. Thorac. Surg.
,
85
, pp.
1631
1638
.10.1016/j.athoracsur.2008.01.035
24.
Gundiah
,
N.
,
Matthews
,
P. B.
,
Karimi
,
R.
,
Azadani
,
A.
,
Guccione
,
J.
,
Guy
,
T. S.
,
Saloner
,
D.
, and
Tseng
,
E. E.
,
2008
, “
Significant Material Property Differences Between the Porcine Ascending Aorta and Aortic Sinuses
,”
J. Heart Valve Dis.
,
17
, pp.
606
613
. Available at http://www.icr-heart.com/?cid=1970
25.
Degroote
,
J.
,
Swillens
,
A.
,
Bruggeman
,
P.
,
Haelterman
,
R.
,
Segers
,
P.
, and
Vierendeels
,
J.
,
2010
, “
Simulation of Fluid-Structure Interaction With the Interface Artificial Compressibility Method
,”
Int. J. Numer. Meth. Biomed. Eng.
,
26
, pp.
276
289
.10.1002/cnm.1276
26.
Wang
,
S. H.
,
Lee
,
L. P.
, and
Lee
,
J. S.
,
2001
, “
A Linear Relation Between the Compressibility and Density of Blood
,”
J. Acoust. Soc. Am.
,
109
, pp.
390
396
.10.1121/1.1333419
27.
Marom
,
G.
,
Kim
,
H. S.
,
Rosenfeld
,
M.
,
Raanani
,
E.
, and
Haj-Ali
,
R.
,
2013
, “
Fully Coupled Fluid-Structure Interaction Model of Congenital Bicuspid Aortic Valves: Effect of Asymmetry on Hemodynamics
,”
Med. Biol. Eng. Comput.
10.1007/s11517-013-1055-4
28.
Montarello
,
J. K.
,
Perakis
,
A. C.
,
Rosenthal
,
E.
,
Boyd
,
E. G. C. A.
,
Yates
,
A. K.
,
Deverall
,
P. B.
,
Sowton
,
E.
, and
Curry
,
P. V. L.
,
1990
, “
Normal and Stenotic Human Aortic Valve Opening: In Vitro Assessment of Orifice Area Changes With Flow
,”
Eur. Heart J.
,
11
, pp.
484
491
. Available at http://eurheartj.oxfordjournals.org/content/11/6/484.abstract
29.
Higashidate
,
M.
,
Tamiya
,
K.
,
Kurosawa
,
H.
, and
Imai
,
Y.
,
1992
, “
Role of the Septal Leaflet in Tricuspid Valve Closure. Consideration for Treatment of Complete Atrioventricular Canal
,”
J. Thorac. Cardiovasc. Surg.
,
104
, pp.
1212
1217
. Available at http://jtcs.ctsnetjournals.org/cgi/content/abstract/104/5/1212
30.
Handke
,
M.
,
Heinrichs
,
G.
,
Beyersdorf
,
F.
,
Olschewski
,
M.
,
Bode
,
C.
, and
Geibel
,
A.
,
2003
, “
In Vivo Analysis of Aortic Valve Dynamics by Transesophageal 3-Dimensional Echocardiography With High Temporal Resolution
,”
J. Thorac. Cardiovasc. Surg.
,
125
, pp.
1412
1419
.10.1016/S0022-5223(02)73604-0
You do not currently have access to this content.