Arteriovenous fistulae are surgically created to provide adequate access for dialysis patients suffering from end-stage renal disease. It has long been hypothesized that the rapid blood vessel remodeling occurring after fistula creation is, in part, a process to restore the mechanical stresses to some preferred level, i.e., mechanical homeostasis. We present computational hemodynamic simulations in four patient-specific models of mature arteriovenous fistulae reconstructed from 3D ultrasound scans. Our results suggest that these mature fistulae have remodeled to return to ‘‘normal’’ shear stresses away from the anastomoses: about 1.0 Pa in the outflow veins and about 2.5 Pa in the inflow arteries. Large parts of the anastomoses were found to be under very high shear stresses >15 Pa, over most of the cardiac cycle. These results suggest that the remodeling process works toward restoring mechanical homeostasis in the fistulae, but that the process is limited or incomplete, even in mature fistulae, as evidenced by the elevated shear at or near the anastomoses. Based on the long term clinical viability of these dialysis accesses, we hypothesize that the elevated nonhomeostatic shear stresses in some portions of the vessels were not detrimental to fistula patency.

References

References
1.
U.S. Renal Data System
,
2011
, “
USRDS 2011 Annual Data Report: Atlas of End-Stage-Renal-Disease in the United States
,” Technical Report,
National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases
,
Bethesda, MD
.
2.
Tordoir
,
J. H. M.
,
Rooyens
,
P.
,
Dammers
,
R.
,
van der Sande
,
F. M.
,
de Haan
,
M.
, and
Yo
,
T. I.
,
2003
, “
Prospective Evaluation of Failure Modes in Autogenous Radiocephalic Wrist Access for Hemodialysis
,”
Nephrol. Dial. Transplant.
,
18
, pp.
378
383
.10.1093/ndt/18.2.378
3.
Gibson
,
K. D.
,
Gilen
,
D. L.
,
Caps
,
M. T.
,
Kohler
,
T. R.
,
Sherrard
,
D. J.
, and
Stehman-Breen
,
C. O.
,
2001
, “
Vascular Access Survival and Incidence of Revisions: A Comparison of Prosthetic Grafts, Simple Autogenous Fisulas, and Venous Transposition Fistulas From the United States Renal Data System Dialysis Morbidity and Mortality Study
,”
J. Vasc. Surg.
,
34
(
4
), pp.
694
700
.10.1067/mva.2001.117890
4.
Lauvao
,
L. S.
,
Ihnat
,
D. M.
,
Goshima
,
K. R.
,
Chavez
,
L.
,
Gruessner
,
A. C.
, and
Mills
,
J. L.
, Sr.
,
2009
, “
Vein Diameter is the Major Predictor of Fistula Maturation
,”
J. Vasc. Surg.
,
49
, pp.
1499
14504
.10.1016/j.jvs.2009.02.018
5.
Corpataux
,
J. M.
,
Haesler
,
E.
,
Silacci
,
P.
,
Res
,
H. B.
, and
Hayoz
,
D.
,
2002
, “
Low-Pressure Environment and Remodelling of the Forearm Vein in Brescia-Cimino Haemodialysis Access
,”
Nephrol. Dial. Transplant.
,
17
, pp.
1057
1062
.10.1093/ndt/17.6.1057
6.
Kamiya
,
A.
and
Togawa
,
T.
,
1980
, “
Adaptive Regulation of Wall Shear Stress to Flow Change in the Canine Carotid Artery
,”
Am. J. Physiol.
,
239
(
1
), pp.
H14
H21
.
7.
Zarins
,
C. K.
,
Zatina
,
M. A.
,
Giddens
,
D. P.
,
Ku
,
D. N.
, and
Glagov
,
S.
,
1987
, “
Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis
,”
J. Vasc. Surg.
,
5
, pp.
413
420
.
8.
Girerd
,
X.
,
London
,
G.
,
Boutouyrie
,
P.
,
Jaques Mourad
,
J.
,
Safar
,
M.
, and
Laurent
,
S.
,
1996
, “
Remodeling of the Radial Artery in Response to a Chronic Increase in Shear Stress
,”
Hypertension
,
27
, pp.
799
803
.10.1161/01.HYP.27.3.799
9.
Humphrey
,
J. D.
,
2008
, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
,
50
, pp.
73
78
.10.1007/s12013-007-9002-3
10.
Owens
,
C. D.
,
Wake
,
N.
,
Kim
,
J. M.
,
Hentschel
,
D.
,
Conte
,
M. S.
, and
Schanzer
,
A.
,
2010
, “
Endothelial Function Predicts Positive Arterial-Venous Fistula Remodeling in Subjects With Stage IV And V Chronic Kidney Disease
,”
J. Vasc. Access.
,
11
(
4
), pp.
329
334
.
11.
Dixon
,
B. S.
,
2006
, “
Why Don't Fistulas Mature?
,”
Kidney Int.
,
70
, pp.
1413
1422
.10.1038/sj.ki.5001747
12.
Ene-Iordache
,
B.
and
Remuzzi
,
A.
,
2012
, “
Disturbed Flow in Radial-Cephalic Arteriovenous Fistulae for Haemodialysis: Low and Oscillating Shear Stress Locates the Sites of Stenosis
,”
Nephrol. Dial. Transplant.
,
27
(
1
), pp.
358
368
.10.1093/ndt/gfr342
13.
Carroll
,
G. T.
,
McGloughlin
,
T. M.
,
Burke
,
P. E.
,
Egan
,
M.
,
Wallis
,
F.
, and
Walsh
,
M. T.
,
2011
, “
Wall Shear Stresses Remain Elevated in Mature Arteriovenous Fistulas: A Case Study
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
021003
.10.1115/1.4003310
14.
Kharboutly
,
Z.
,
Deplano
,
V.
,
Bertrand
,
E.
, and
Legallais
,
C.
,
2010
, “
Numerical and Experimental Study of Blood Flow Through a Patient-Specific Arteriovenous Fistula Used for Hemodialysis
,”
Med. Eng. Phys.
,
32
, pp.
111
118
.10.1016/j.medengphy.2009.10.013
15.
Leotta
,
D. F.
,
Primozich
,
J. F.
,
Beach
,
K. W.
,
Bergelin
,
R. O.
, and
Strandness
,
D. E.
, Jr.
,
2001
, “
Serial Measurement of Cross-Sectional Area in Peripheral Vein Grafts Using Three-Dimensional Ultrasound
,”
Ultrasound Med. Biol.
,
27
(
1
), pp.
61
68
.10.1016/S0301-5629(00)00296-9
16.
Leotta
,
D. F.
,
Primozich
,
J. F.
,
Beach
,
K. W.
,
Bergelin
,
R. O.
,
Zierler
,
R. E.
, and
Strandness
,
D. E.
, Jr.
,
2003
, “
Remodeling in Peripheral Vein Graft Revisions: Serial Study With Three-Dimensional Ultrasound Imaging
,”
J. Vasc. Surg.
,
37
(
4
), pp.
798
807
.10.1067/mva.2003.137
17.
Legget
,
M. E.
,
Leotta
,
D. F.
,
Bolson
,
E. L.
,
McDonald
,
J. A.
,
Martin
,
R. W.
,
Li
,
X. N.
,
Otta
,
C. M.
, and
Sheehan
,
F. H.
,
1998
, “
System for Quantitative Three-Dimensional Echocardiography of the Left Ventricle Based on a Magnetic-Field Position and Orientation Sensing System
,”
IEEE Trans. Biomed. Eng.
,
45
(
4
), pp.
494
504
.10.1109/10.664205
18.
ANSYS, Inc.
,
2009
, “
ANSYS® FLUENT® Theory Guide
,” Release 12.1 ed.,
Cannonsburg, PA
.
19.
Lee
,
S.-W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
279
.10.1115/1.2540836
20.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J Physiol.
,
127
, pp.
553
563
.
21.
Vignon-Clemente
,
I.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for Three-Dimensional Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
525
640
.
22.
Schwartz
,
L. B.
,
Purut
,
C. M.
,
O'Donohoe
,
M. K.
,
Smith
,
P. K.
,
Otto Hagan
,
P.
, and
McCann
,
R. L.
,
1991
Quantitation of Vascular Outflow by Measurement of Impedance
,”
J. Vasc. Surg.
,
14
(
3
), pp.
353
363
.10.1016/0741-5214(91)90088-C
23.
Supplementary material provides a description of the numerical scheme as well as numeric values used for the resistance-capacitance boundary conditions.
24.
Zierler
,
B. K.
,
Kirkman
,
T. R.
,
Kraiss
,
L. W.
,
Reiss
,
W. G.
,
Horn
,
J. R.
,
Bauer
,
L. A.
,
Clowes
,
A. W.
, and
Kohler
,
T. R.
,
1992
, “
Accuracy of Duplex Scanning for Measurement of Arterial Volume Flow
,”
J. Vasc. Surg.
,
16
(
4
), pp.
520
526
.10.1016/0741-5214(92)90159-6
25.
Lee
,
S.-W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.10.1115/1.3127252
26.
Ene-Iordache
,
B.
,
Mosconi
,
L.
,
Antiga
,
L.
,
Bruno
,
S.
, and
Anghileri
,
A.
,
2003
, “
Radial Artery Remodeling in Response to Shear Stress Increase Within Arteriovenous Fistula for Hemodialysis Access
,”
Endothelium
,
10
, pp.
95
102
.10.1080/10623320303365
27.
Wong
,
V.
,
Ward
,
R.
,
Taylor
,
J.
,
Selvakumar
,
S.
,
How
,
T. V.
, and
Bakran
,
A.
,
1996
, “
Factors Associated With Early Failure of Arteriovenous Fistulae for Haemodyialysis Access
,”
Eur. J. Vasc. Endovasc. Surg.
,
12
, pp.
207
213
.10.1016/S1078-5884(96)80108-0
28.
Krishnamoorthy
,
M. K.
,
Banerjee
,
R. K.
,
Wang
,
Y.
,
Zhang
,
J.
,
Roy
,
A. S.
,
Khoury
,
S. F.
,
Arend
,
L. J.
,
Rudich
,
S.
, and
Roy-Chaudhury
,
P.
,
2008
, “
Hemodynamic Wall Shear Stress Profiles Influence the Magnitude and Pattern of Stenosis in a Pig AV Fistula
,”
Kidney Int.
,
74
, pp.
1410
1419
.10.1038/ki.2008.379
29.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. D.
,
2000
, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
,
418
, pp.
351
375
.10.1017/S002211200000121X
30.
Ene-Iordache
,
B.
,
Mosconi
,
L.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
,
2001
, “
Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
284
293
.10.1115/1.1372702
31.
Dammers
,
R.
,
Tordoir
,
J. H. M.
,
Kooman
,
J. P.
,
Welten
,
R.
,
Hameleers
,
J. M. M.
,
Kitslaar
,
P.
, and
Hoeks
,
A. P. G.
,
2005
, “
The Effect of Flow Changes on the Arterial System Proximal to an Arteriovenous Fistula for Hemodialysis
,”
Ultrasound Med Biol
,
31
(
10
), pp.
1327
1333
.10.1016/j.ultrasmedbio.2005.03.017
32.
Huynh
,
T. N.
,
Chacko
,
B. K.
,
Teng
,
X.
,
Brott
,
B. C.
,
Allon
,
M.
,
Kelpke
,
S. S.
,
Thompson
,
J. A.
,
Patel
,
R. P.
, and
Anayiotos
,
A. S.
,
2007
, “
Effects of Venous Needle Turbulence During Ex Vivo Hemodialysis on Endothelial Morphology and Nitric Oxide Formation
,”
J. Biomech.
,
40
, pp.
2158
2166
.10.1016/j.jbiomech.2006.10.028
33.
Basile
,
C.
,
Ruggieri
,
G.
,
Vernaglione
,
L.
,
Montanaro
,
A.
, and
Giordano
,
R.
,
2004
, “
The Natural History of Autogenous Radio-Cephalic Wrist Arteriovenous Fistulas of Haemodialysis Patients: A Prospective Obervational Study
,”
Nephrol. Dial. Transplant.
,
19
, pp.
1231
1236
.10.1093/ndt/gfh073
34.
Jiang
,
Z.
,
Wu
,
L.
,
Miller
,
B. L.
,
Goldman
,
D. R.
,
Fernandez
,
C. M.
,
Abouhamze
,
Z. S.
,
Ozaki
,
C. K.
, and
Berceli
,
S. A.
,
2003
, “
A Novel Vein Graft Model: Adaption to Differential Flow Environments
,”
Am. J. Physiol: Heart Circ. Physiol.
,
286
, pp.
240
245
.10.1152/ajpheart.00760.2003
35.
Meyerson
,
S. L.
,
Skelly
,
C. L.
,
Curi
,
M. A.
,
Shakur
,
U. M.
,
Vosicky
,
J. E.
,
Glagov
,
S.
,
Christen
,
T.
,
Gabbiani
,
G.
, and
Schwartz
,
L. B.
,
2001
, “
The Effects of Extremely Low Shear Stress on Cellular Proliferation and Neointimal Thickening in the Failing Bypass Graft
,”
J. Vasc. Surg.
,
34
(
1
), pp.
90
97
.10.1067/mva.2001.114819
36.
Ben Driss
,
A.
,
Bennessiano
,
J.
,
Poitevin
,
P.
,
Levy
,
B. I.
, and
Baptiste Michel
,
J.
,
1997
, “
Arterial Expansive Remodeling Induced by High Flow Rates
,”
Am. J. Physiol.
,
272
(
2
), pp.
H851
H858
.
37.
Tronc
,
F.
,
Mallat
,
Z.
,
Lehoux
,
S.
,
Wassef
,
M.
,
Esposito
,
B.
, and
Tedugui
,
A.
,
2000
, “
Role of Matrix Matalloproteinases in Blood Flow-Induced Arterial Enlargement
,”
Arterioscler., Thromb., Vasc. Biol.
,
20
, pp.
e120
e126
.10.1161/01.ATV.20.12.e120
38.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2009
, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc., Interface
,
6
, pp.
293
306
.10.1098/rsif.2008.0254
You do not currently have access to this content.