Biomechanical preconditioning of biological specimens by cyclic loading is routinely done presumably to stabilize properties prior to the main phase of a study. However, no prior studies have actually measured these effects for whole bone of any kind. The aim of this study, therefore, was to quantify these effects for whole bones. Fourteen matched pairs of fresh-frozen intact cadaveric canine femurs were sinusoidally loaded in 4-point bending from 50 N to 300 N at 1 Hz for 25 cycles. All femurs were tested in both anteroposterior (AP) and mediolateral (ML) bending planes. Bending stiffness (i.e., slope of the force-vs-displacement curve) and linearity R2 (i.e., coefficient of determination) of each loading cycle were measured and compared statistically to determine the effect of limb side, cycle number, and bending plane. Stiffnesses rose from 809.7 to 867.7 N/mm (AP, left), 847.3 to 915.6 N/mm (AP, right), 829.2 to 892.5 N/mm (AP, combined), 538.7 to 580.4 N/mm (ML, left), 568.9 to 613.8 N/mm (ML, right), and 553.8 to 597.1 N/mm (ML, combined). Linearity R2 rose from 0.96 to 0.99 (AP, left), 0.97 to 0.99 (AP, right), 0.96 to 0.99 (AP, combined), 0.95 to 0.98 (ML, left), 0.94 to 0.98 (ML, right), and 0.95 to 0.98 (ML, combined). Stiffness and linearity R2 versus cycle number were well-described by exponential curves whose values leveled off, respectively, starting at 12 and 5 cycles. For stiffness, there were no statistical differences for left versus right femurs (p = 0.166), but there were effects due to cycle number (p < 0.0001) and AP versus ML bending plane (p < 0.0001). Similarly, for linearity, no statistical differences were noted due to limb side (p = 0.533), but there were effects due to cycle number (p < 0.0001) and AP versus ML bending plane (p = 0.006). A minimum of 12 preconditioning cycles was needed to fully stabilize both the stiffness and linearity of the canine femurs. This is the first study to measure the effects of mechanical preconditioning on whole bones, having some practical implications on research practices.

References

References
1.
DeFrances
,
C. J.
,
Lucas
,
C. A.
,
Buie
,
V. C.
, and
Golosinskiy
,
A.
, 2008, “
2006 National Hospital Discharge Survey
,” National Health State Report, Vol.
5
, pp.
1
20
.
2.
Martinet
,
O.
,
Cordey
,
J.
,
Harder
,
Y.
,
Maier
,
A.
,
Buhler
,
M.
, and
Barraud
,
G. E.
, 2000, “
The Epidemiology of Fractures of the Distal Femur
,”
Injury
,
31
(S
3
), pp.
C62
C63
.
3.
Elstrom
,
J. A.
,
Virkus
,
W. W.
, and
Pankovich
,
A. M.
, eds, 2006,
Handbook of Fractures
,
3rd ed.
,
McGraw-Hill
,
New York
, pp.
264
352
.
4.
Bougherara
,
H.
,
Zdero
,
R.
,
Miric
,
M.
,
Shah
,
S.
,
Hardisty
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
, 2009, “
The Biomechanics of the T2 Femoral Nailing System: A Comparison of Synthetic Femurs With Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
H3
), pp.
303
314
.
5.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
, 2001, “
Fixation of Periprosthetic Femoral Shaft Fractures: A Biomechanical Comparison of Two Techniques
,”
J. Orthop. Trauma
,
15
(
3
), pp.
177
180
.
6.
Fulkerson
,
E.
,
Koval
,
K.
,
Preston
,
C. F.
,
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Egol
,
K. A.
, 2006, “
Fixation of Periprosthetic Femoral Shaft Fractures Associated With Cemented Femoral Stems: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates
,”
J. Orthop. Trauma
,
20
(
2
), pp.
89
93
.
7.
Martens
,
M.
,
Van Audekercke
,
R.
,
De Meester
,
P.
, and
Mulier
,
J. C.
, 1980, “
The Mechanical Characteristics of the Longbones of the Lower Extremity in Torsional Loading
,”
J. Biomech.
,
13
(
8
), pp.
667
676
.
8.
Martens
,
M.
,
Van Audekercke
,
R.
,
De Meester
,
P.
, and
Mulier
,
J. C.
, 1986, “
Mechanical Behaviour of Femoral Bones in Bending Loading
,”
J. Biomech.
,
19
(
6
), pp.
443
454
.
9.
McConnell
,
A.
,
Zdero
,
R.
,
Syed
,
K.
,
Peskun
,
C.
, and
Schemitsch
,
E. H.
, 2008, “
The Biomechanics of Ipsilateral Intertrochanteric and Femoral Shaft Fractures: A Comparison of 5 Fracture Fixation Techniques
,”
J. Orthop. Trauma
,
22
(
8
), pp.
517
524
.
10.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
J. Biomech. Eng.
,
129
(
1
), pp.
12
19
.
11.
Talbot
,
M.
,
Zdero
,
R.
, and
Schemitsch
,
E. H.
, 2008, “
Cyclic Loading of Periprosthetic Fracture Fixation Constructs
,”
J. Trauma
,
64
(
5
), pp.
1308
1312
.
12.
Talbot
,
M.
,
Zdero
,
R.
,
Garneau
,
D.
,
Cole
,
P. A.
, and
Schemitsch
,
E. H.
, 2008, “
Fixation of Longbone Segmental Defects: A Biomechanical Study
,”
Injury
,
39
(
2
), pp.
181
186
.
13.
Lever
,
J. P.
,
Zdero
,
R.
,
Nousiainen
,
M. T.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanical Analysis of Three Plating Fixation Systems for Periprosthetic Femoral Fracture Near the Tip of a Total Hip Arthroplasty
,”
J. Orthop. Surg. Res.
,
5
, pp.
45
.
14.
Zdero
,
R.
,
Bougherara
,
H.
,
Dubov
,
A.
,
Shah
,
S.
,
Zalzal
,
P.
,
Mahfud
,
A.
, and
Schemitsch
,
E. H.
, 2010, “
The Effect of Cortex Thickness on Intact Femur Biomechanics: A Comparison of Finite Element Analysis with Synthetic Femurs
,”
Proc. Inst. Mech. Eng., Part H: J Eng. Med.
,
224
(
H7
), pp.
831
840
.
15.
Zdero
,
R.
,
Shah
,
S.
,
Mosli
,
M.
, and
Schemitsch
,
E. H.
, 2010, “
The Effect of Load Application Rate on the Biomechanics of Synthetic Femurs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
H4
), pp.
599
605
.
16.
Zdero
,
R.
,
McConnell
,
A. J.
,
Peskun
,
C.
,
Syed
,
K. A.
, and
Schemitsch
,
E. H.
, 2011, “
Biomechanical Measurements of Torsion-Tension Coupling in Human Cadaveric Femurs
,”
J. Biomech. Eng.
,
133
(
1
), pp.
014501
-1–014501-
6
.
17.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2008, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Joint Surg. Am.
,
90
(
5
), pp.
1068
1077
.
18.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.
19.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design ofComposite Replicate Femurs and Tibias
,”
J. Biomech.
,
34
(
6
), pp.
773
781
.
20.
Mather
,
B. S.
, 1968, “
Observations on the Effects of Static and Impact Loading on the Human Femur
,”
J. Biomech.
,
1
(
4
), pp.
331
335
.
21.
Viano
,
D. C.
, and
Stalnaker
,
R. L.
, 1980, “
Mechanisms of Femoral Fracture
,”
J. Biomech.
,
13
, pp.
701
715
.
22.
American National Standards Institute (ANSI), www.ansi.orgwww.ansi.org (accessed Nov 1, 2010).
23.
American Society for Testing and Materials International (ASTMI), www.astm.orgwww.astm.org (accessed Nov 1, 2010).
24.
International Standards Organization (ISO), www.iso.orgwww.iso.org (accessed Nov 1, 2010).
25.
Savelberg
,
H. H. C. M.
,
Kooloos
,
J. G. M.
,
Huiskes
,
R.
, and
Kauer
,
J. M. G.
, 1993, “
An Indirect Method to Assess Wrist Ligament Forces with Particular Regard to the Effect of Preconditioning
,”
J. Biomech.
,
26
(
11
), pp.
1347
1351
.
26.
Fung
,
Y. C.
, 1972, “
Stress-Strain History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Y. C.
Fung
,
N.
Perrone
, and
M. I.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
, 1978, “
Measurement of the Mechanical Properties of Ligaments
,”
CRC Handbook of Engineering in Medicine and Biology
,
B. N.
Feinberg
, and
D. G.
Fleming
, eds.,
CRC
,
Boca Raton
, Vol.
1
, pp.
279
314
.
28.
Viidik
,
A.
, 1973, “
Functional Properties of Collagenous Tissues
,”
Int. Rev. Connect Tissue Res.
,
6
, pp.
127
215
.
29.
Viidik
,
A.
, 1980, “
Mechanical Properties of Parallel-Fibred Collagenous Tissues
,”
Biology of Collagen
,
A.
Viidik
, ed.,
Academic
,
London
, pp.
237
255
.
30.
Woo
,
S. L.-Y.
,
Games
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
, 1983, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
,
1
, pp.
22
29
.
31.
Woo
,
S. L.-Y.
,
Orlando
,
C. A.
,
Camp
,
J. F.
, and
Akeson
,
W. H.
, 1986, “
Effect of Postmortem Storage by Freezing on Ligament Tensile Behavior
,”
J. Biomech.
,
19
, pp.
399
404
.
32.
Zdero
,
R.
,
Olsen
,
M.
,
Elfatori
,
S.
,
Skrinskas
,
T.
,
Nourhosseini
,
H.
,
Whyne
,
C.
,
Schemitsch
,
E. H.
, and
Von Schroeder
,
H.
, 2009, “
Linear and Torsional Mechanical Characteristics of Intact and Reconstructed Scapholunate Ligaments
,”
J. Biomech. Eng.
,
131
(
4
), pp.
041009
-1–041009-
7
.
33.
Zdero
,
R.
,
Olsen
,
M.
,
Elfatori
,
S.
,
Skrinskas
,
T.
,
Schemitsch
,
E.
,
Whyne
,
C.
, and
Von Schroeder
,
H.
, 2008, “
A Biomechanical Assessment of the Coupling of Torsion and Tension in the Human Scapholunate Ligament
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
H6
), pp.
907
914
.
34.
Van Ee
,
C. A.
,
Chasse
,
A. L.
, and
Myers
,
B. S.
, 2010, “
Quantifying Skeletal Muscle Properties in Cadaveric Test Specimens: Effects of Mechanical Loading, Postmortem Time, and Freezer Storage
,”
J. Biomech. Eng.
,
122
(
1
), pp.
9
14
.
35.
Schatzmann
,
L.
,
Brunner
,
P.
, and
Staubli
,
H. U.
, 1998, “
Effect of Cyclic Preconditioning on the Tensile Properties of Human Quadriceps Tendons and Patellar Ligaments
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
6
(
1
), pp.
S56
S61
.
36.
Cummings
,
J. F.
,
Holden
,
J. P.
,
Grood
,
E. S.
,
Wroble
,
R. R.
,
Butler
,
D. L.
, and
Schafer
,
J. A.
, 1991, “
In-Vitro Measurement of Patellar Tendon Forces and Joint Position in the Goat Model
,” Trans 37th Annual Meeting of the ORS, Anaheim, CA, p.
601
.
37.
Takai
,
S.
,
Adams
,
D. J.
,
Livesay
,
G. A.
, and
Woo
,
S. L. -Y. L.-Y.
, 1991, “
Determination of Loads in the Human Anterior Cruciate Ligament
,” Trans 37th Annual Meeting of the ORS, Anaheim, CA, p.
235
.
38.
Xu
,
W. S.
,
Glos
,
D. L.
,
Butler
,
D. L.
,
Stouffer
,
D. C.
, and
Grood
,
E. S.
, 1990, “
Analytic Sensitivity Studies of Implantable Force Transducer in Goat Patellar Tendon
,” Proc. 1st World Congress of Biomechanics, San Diego, CA, p.
321
.
39.
Linde
,
F.
, and
Hvid
,
I.
, 1987, “
Stiffness Behaviour of Trabecular Bone Specimens
,”
J. Biomech.
,
20
, pp.
83
89
.
40.
Bowman
,
S. M.
,
Zeind
,
J.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
, 1996, “
The Tensile Behavior of Demineralized Bovine Cortical Bone
,”
J. Biomech.
,
29
(
11
), pp.
1497
1501
.
41.
Wheeler
,
D. L.
,
Haynie
,
J. L.
,
Barrey
,
H.
,
Scarborough
,
M.
, and
Enneking
,
W.
, 2001, “
Biomechanical Evaluation of Retrieved Massive Allografts: Preliminary Results
,”
Biomed. Sci. Instrum.
,
37
, pp.
251
256
.
42.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage–I. Residual Strength and Stiffness
,”
J. Biomech.
10
(
5–6
), pp.
325
337
.
43.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
, 1981, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta. Orthop. Scand.
,
52
(
5
), pp.
481
490
.
44.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
, 1996, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.
45.
Zioupos
,
P.
, and
Casinos
,
A.
, 1998, “
Cumulative Damage and the Response of Human Bone in Two-Step Loading Fatigue
,”
J. Biomech.
,
31
(
9
), pp.
825
833
.
46.
Mow
,
V. C.
, and
Huiskes
,
R.
, eds., 2005,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
3rd ed.
,
Lippincott
,
New York
, pp.
123
179
; 449–453.
47.
Ascenzi
,
A.
, and
Bonucci
,
E.
, 1976, “
Mechanical Similarities Between Alternate Osteons and Cross-Ply Laminates
,”
J. Biomech.
,
9
(
2
), pp.
65
71
.
48.
Burstein
,
A. H.
,
Zika
,
J. M.
,
Heiple
,
K. G.
, and
Klein
,
L.
, 1975, “
Contribution of Collagen and Mineral to the Elastic-Plastic Properties of Bone
,”
J. Bone Joint Surg. Am.
,
57
(
7
), pp.
956
961
.
49.
Malachanne
,
E.
,
Dureisseix
,
D.
, and
Jourdan
,
F.
, 2011, “
Numerical Model of Bone Remodeling Sensitive to Loading Frequency Through a Poroelastic Behavior and Internal Fluid Movements
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
6
), pp.
849
857
.
50.
Nguyen
,
V. H.
,
Lemaire
,
T.
, and
Naili
,
S.
, 2010, “
Poroelastic Behaviour of Cortical Bone Under Harmonic Axial Loading: A Finite Element Study at the Osteonal Scale
,”
Med. Eng. Phys.
,
32
(
4
), pp.
384
390
.
51.
Peindl
,
R. D.
,
Zura
,
R. D.
,
Vincent
,
A.
,
Coley
,
E. R.
,
Bosse
,
M. J.
, and
Sims
,
S. H.
, 2004, “
Unstable Proximal Extraarticular Tibia Fractures: A Biomechanical Evaluation of Four Methods of Fixation
,”
J. Orthop. Trauma
,
18
(
8
), pp.
540
545
.
52.
Gallimore
,
C. H.
,
McConnell
,
A. J.
,
Zdero
,
R.
,
Koo
,
H.
,
McKee
,
M. D.
, and
Schemitsch
,
E. H.
, 2008, “
The Effect of Cement Mixing Time on the Biomechanics of Cement Augmented Plated Fractures in Canine Femora
,”
J. Orthop. Trauma
,
22
(
9
), pp.
637
642
.
53.
Kaneps
,
A. J.
,
Stover
,
S. M.
, and
Lane
,
N. E.
, 1997, “
Changes in Canine Cortical and Cancellous Bone Mechanical Properties Following Immobilization and Remobilization With Exercise
,”
Bone
,
21
(
5
), pp.
419
423
.
54.
Little
,
J. P.
,
Horn
,
T. J.
,
Marcellin-Little
,
D. J.
,
Harrysson
,
O. L. A.
, and
West
,
H. A.
, II
, 2012, “
Development and Validation of a Canine Radius Replica for Mechanical Testing of Orthopedic Implants
,”
Am. J. Vet. Res.
,
73
(
1
), pp.
27
33
.
55.
Benz
,
G.
,
Höpfner
,
H.
,
Göppl
,
M.
, and
Kallieris
,
D.
, 2006, “
Experimental Studies of Lateral Stress to Transverse Fractured Femora Treated With External Fixation
,”
Eur. J. Pediatr. Surg.
16
(
5
), pp.
343
347
.
56.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Hasan
,
M. S.
, and
Pidaparti
,
R.
, 1998, “
Does Microdamage Accumulation Affect the Mechanical Properties of Bone?
,”
J. Biomech.
,
31
(
4
), pp.
337
345
.
57.
Pidaparti
,
R. M.
,
Akyuz
,
U.
,
Naicka
,
P. A.
, and
Burr
,
D. B.
, 2000, “
Fatigue Data Analysis of Canine Femurs Under Four-Point Bending
,”
Biomed. Mater. Eng.
,
10
(
1
), pp.
43
50
.
58.
Benz
,
G.
,
Kallieris
,
D.
, and
Blume
,
U.
, 2000, “
Biomechanik des experimentell gesetzten biege- und torsionsbruchs vor und nach versorgung mit nancy-nageln
,”
Zentralbl Kinderchir
,
9
, pp.
104
109
.
59.
Auerbach
,
B. M.
, and
Ruff
,
C. B.
, 2006, “
Limb Bone Bilateral Asymmetry: Variability and Commonality Among Modern Humans
,”
J. Hum. Evol.
,
50
, 2, pp.
203
218
.
60.
Banse
,
X.
,
Delloye
,
C.
,
Cornu
,
O.
, and
Bourgois
,
R.
, 1996, “
Comparative Left-Right Mechanical Testing of Cancellous Bone from Normal Femoral Heads
,”
J. Biomech.
,
29
(
10
), pp.
1247
1253
.
61.
Noble
,
P. C.
,
Box
,
G. G.
,
Kamaric
,
E.
,
Fink
,
M. J.
,
Alexander
,
J. W.
, and
Tullos
,
H. S.
, 1995, “The Effect of Aging on the Shape of the Proximal Femur,”
Clin. Orthop. Relat. Res.
,
316
, pp.
31
44
.
62.
Mittlmeier
,
T.
,
Mattheck
,
C.
, and
Dietrich
,
F.
, 1994, “
Effects of Mechanical Loading on the Profile of Human Femoral Diaphyseal Geometry
,”
Med. Eng. Phys.
,
16
, pp.
75
81
.
63.
Kuzyk
,
P. R. T.
,
Zdero
,
R.
,
Shah
,
S.
,
Olsen
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, “
Femoral Head Lag Screw Position for Cephalomedullary Nails: A Biomechanical Analysis
,”
J Orthop Trauma, 2012 Feb 11 [Epub ahead of print]
.
64.
Nicayenzi
,
B.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
, 2011, “
The Biomechanical Effect of Changes in Cancellous Bone Density on Synthetic Femur Behaviour
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
11
), pp.
1050
1060
.
65.
Kuzyk
,
P. R. T.
,
Shah
,
S.
,
Zdero
,
R.
,
Olsen
,
M.
,
Waddell
,
J. P.
,
Schemitsch
,
E. H.
, “
A Biomechanical Comparison of Static versus Dynamic Lag Screw Modes for Cephalomedullary Nails used to Fix Unstable Peritrochanteric Fractures
,”
J Trauma Acute Care Surg
,
72
(2)
, pp.
E65
70
[Epub 2011 Sep 15].
66.
Zdero
,
R.
,
Keast-Butler
,
O.
, and
Schemitsch
,
E. H.
, 2010, “
A Biomechanical Comparison of Two Triple-Screw Methods for Femoral Neck Fracture Fixation in a Synthetic Bone Model
,”
J Trauma
,
69
(
6
), pp.
1537
1544
.
67.
Zdero
,
R.
,
Shah
,
S.
,
Mosli
,
M.
, and
Schemitsch
,
E. H.
, 2010, “
The Effect of Load Application Rate on the Biomechanics of Synthetic Femurs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
H4
), pp.
599
605
.
68.
Lescheid
,
J.
,
Zdero
,
R.
,
Shah
,
S.
,
Kuzyk
,
P. R. T.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanics of Locked Plating for Repairing Proximal Humerus Fractures With or Without Medial Cortical Support
,”
J. Trauma
,
69
(
5
), pp.
1235
1242
.
69.
Kuzyk
,
P.
,
Lobo
,
J.
,
Whelan
,
D.
,
Zdero
,
R.
,
McKee
,
M. D.
, and
Schemitsch
,
E. H.
, 2009, “
Biomechanical Evaluation of Extramedullary Versus Intramedullary Fixation for Reverse Obliquity Intertrochanteric Fractures
,”
J. Orthop. Trauma
,
23
(
1
), pp.
31
38
.
70.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2011, “
Preconditioning is Correlated with Altered Collagen Fiber Alignment in Ligament
,”
J. Biomech. Eng.
,
133
(
6
), pp.
064506
-1–064506-
4
.
71.
Sverdlik
,
A.
, and
Lanir
,
Y.
, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
J. Biomech. Eng.
124
(
1
), pp.
78
84
.
72.
Nordin
,
M.
, and
Frankel
,
V. H.
, 2001,
Basic Biomechanics of the Musculoskeletal System
.
3rd ed.
,
Lippincott
,
New York
.
73.
Norton
,
R. L.
, 1996,
Machine Design: An Integrated Approach
,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
200
217
.
74.
Mikhelson
,
I.
, 2004,
Structural Engineering Formulas
,
McGraw-Hill
,
New York
, p.
43
.
75.
Autefage
,
A.
,
Palierne
,
S.
,
Charron
,
C.
, and
Swider
,
P.
,
Effective Mechanical Properties of Diaphyseal Cortical Bone in the Canine Femur
, Vet. J., 2012 May 15 [Epub ahead of print].
76.
Zdero
,
R.
,
Rose
,
S.
,
Schemitsch
,
E. H.
, and
Papini
,
M.
, 2007, “
Cortical Screw Pullout Strength and Effective Shear Stress in Synthetic Third Generation Composite Femurs
,”
J. Biomech. Eng.
,
129
(
2
), pp.
289
293
.
77.
Zdero
,
R.
,
Elfallah
,
K.
,
Olsen
,
M.
, and
Schemitsch
,
E. H.
, 2009, “
Cortical Screw Purchase in Synthetic and Human Femurs
,”
J. Biomech. Eng.
,
131
(
9
), p.
094503
.
78.
Duda
,
G. N.
,
Heller
,
M.
,
Albinger
,
J.
,
Schulz
,
O.
,
Schneider
,
E.
, and
Claes
,
L.
, 1998, “
Influence of Muscle Forces on Femoral Strain Distribution
,”
J. Biomech.
,
31
(
9
), pp.
841
846
.
79.
Taylor
,
M. E.
,
Tanner
,
K. E.
,
Freeman
,
M. A.
, and
Yettram
,
A.L.
, 1996, “
Stress and Strain Distribution within the Intact Femur: Compression or Bending?
Med. Eng. Phys.
,
18
(
2
), pp.
122
131
.
80.
Garino
,
J. P.
, and
Beredjiklian
,
P. K.
, eds., 2007,
Adult Reconstruction and Arthroplasty: Core Knowledge in Orthopaedics
,
Elsevier
,
New York
, p.
32
.
81.
Paul
,
J. P.
, 1999, “
Strength Requirements for Internal and External Prostheses
,”
J. Biomech.
,
32
, pp.
381
393
.
You do not currently have access to this content.