Background. Scleral biomechanical properties may be important in the pathogenesis and progression of glaucoma. The goal of this study is to develop and validate an ultrasound method for measuring cross-sectional distributive strains in the sclera during elevations of intraocular pressure (IOP). Method of Approach. Porcine globes (n = 5) were tested within 24 hs postmortem. The posterior scleral shells were dissected and mounted onto a custom-built pressurization chamber. A high-frequency (55-MHz) ultrasound system (Vevo660, VisualSonics Inc., Toronto) was employed to acquire the radio frequency data during scans of the posterior pole along both circumferential and meridian directions. The IOP was gradually increased from 5 to 45 mmHg. The displacement fields were obtained from correlation-based ultrasound speckle tracking. A least-square strain estimator was used to calculate the strains in both axial and lateral directions. Experimental validation was performed by comparing tissue displacements calculated from ultrasound speckle tracking with those induced by an actuator. Theoretical analysis and simulation experiments were performed to optimize the ultrasound speckle tracking method and evaluate the accuracy and signal-to-noise ratio (SNR) in strain estimation. Results. Porcine sclera exhibited significantly larger axial strains (e.g., −5.1 ± 1.5% at 45 mmHg, meridian direction) than lateral strains (e.g., 2.2 ± 0.7% at 45 mmHg, meridian direction) during IOP elevations (P’s < 0.01). The strain magnitudes increased nonlinearly with pressure increase. The strain maps displayed heterogeneity through the thickness. The lateral strains were significantly smaller in the circumferential direction than the meridian direction at 45 mmHg (P < 0.05). Experimental validation showed that the ultrasound speckle tracking method was capable of tracking displacements at the accuracy of sub-micron to micron. Theoretical analysis predicted the dependence of the strain estimation SNR on the strain level, as well as signal processing parameters such as kernel size. Simulation results showed that ultrasound speckle tracking had a high accuracy for estimating strains of 1–5% and a high SNR for strains of 0.5–5%. Conclusions. A new experimental method based on ultrasound speckle tracking has been developed for obtaining cross-sectional strain maps of the posterior sclera. This method provides a useful tool to examine distributive strains through the thickness of the sclera during elevations of IOP.

References

References
1.
Kingman
,
S.
, 2004, “
Glaucoma is Second Leading Cause of Blindness Globally
,”
Bull. World Health Organ.
,
82
(
11
), pp.
887
888
. Available at http://www.scielosp.org/pdf/bwho/v82n11/v82n11a19.pdf
2.
Burgoyne
,
C. F.
,
Downs
,
J. C.
,
Bellezza
,
A. J.
,
Suh
,
J. K. F.
, and
Hart
,
R. T.
, 2005, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retin. Eye Res.
,
24
(
1
), pp.
39
73
.
3.
Sigal
,
I. A.
,
Flanagan
,
J. G.
, and
Ethier
,
C. R.
, 2005, “
Factors Influencing Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
,
46
(
11
), pp.
4189
4199
.
4.
Sigal
,
I. A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
, 2009, “
Modeling Individual-Specific Human Optic Nerve Head Biomechanics. Part II: Influence of Material Properties
,”
Biomech. Model. Mechanobiol.
,
8
(
2
), pp.
99
109
.
5.
McBrien
,
N. A.
,
Cornell
,
L. M.
, and
Gentle
,
A.
, 2001, “
Structural and Ultrastructural Changes to the Sclera in a Mammalian Model of High Myopia
,”
Invest. Ophthalmol. Visual Sci.
,
42
(
10
), pp.
2179
2187
. Available at http://www.ncbi.nlm.nih.gov/pubmed/11527928
6.
Phillips
,
J. R.
, and
Mcbrien
,
N. A.
, 1995, “
Form Deprivation Myopia – Elastic Properties of Sclera
,”
Ophthalmic Physiol. Opt.
,
15
(
5
), pp.
357
362
.
7.
Siegwart
,
J. T.
, and
Norton
,
T. T.
, 1999, “
Regulation of the Mechanical Properties of Tree Shrew Sclera by the Visual Environment
,”
Vision Res.
,
39
(
2
), pp.
387
407
.
8.
McBrien
,
N. A.
,
Jobling
,
A. I.
, and
Gentle
,
A.
, 2009, “
Biomechanics of the Sclera in Myopia: Extracellular and Cellular Factors
,”
Optom. Vision Sci.
,
86
(
1
), pp.
23
30
.
9.
Mitchell
,
P.
,
Hourihan
,
F.
,
Sandbach
,
J.
, and
Wang
,
J. J.
, 1999, “
The Relationship Between Glaucoma and Myopia – The Blue Mountains Eye Study
,”
Ophthalmology
,
106
(
10
), pp.
2010
2015
.
10.
Watson
,
P. G.
, and
Young
,
R. D.
, 2004, “
Scleral Structure, Organisation and Disease. A Review
,”
Exp. Eye Res.
,
78
(
3
), pp.
609
623
.
11.
Friberg
,
T. R.
, and
Lace
,
J. W.
, 1988, “
A Comparison of the Elastic Properties of Human Choroid and Sclera
,”
Exp. Eye Res.
,
47
(
3
), pp.
429
436
.
12.
Elsheikh
,
A.
,
Geraghty
,
B.
,
Alhasso
,
D.
,
Knappett
,
J.
,
Campanelli
,
M.
, and
Rama
,
P.
, 2010, “
Regional Variation in the Biomechanical Properties of the Human Sclera
,”
Exp. Eye Res.
,
90
(
5
), pp.
624
633
.
13.
Downs
,
J. C.
,
Suh
,
J. K. F.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
, 2005, “
Viscoelastic Material Properties of the Peripapillary Sclera in Normal and Early-Glaucoma Monkey Eyes
,”
Invest. Ophthalmol. Visual Sci.
,
46
(
2
), pp.
540
546
.
14.
Schultz
,
D. S.
,
Lotz
,
J. C.
,
Lee
,
S. M.
,
Trinidad
,
M. L.
, and
Stewart
,
J. M.
, 2008, “
Structural Factors That Mediate Scleral Stiffness
,”
Invest. Ophthalmol. Visual Sci.
,
49
(
10
), pp.
4232
4236
.
15.
Palko
,
J. R.
,
Pan
,
X. L.
, and
Liu
,
J.
, 2011, “
Dynamic Testing of Regional Viscoelastic Behavior of Canine Sclera
,”
Exp. Eye Res.
,
93
(
6
), pp.
825
832
.
16.
Curtin
,
B. J.
, 1969, “
Physiopathologic Aspects of Scleral Stress-Strain
,”
Trans. Am. Ophthalmol. Soc.
,
67
, pp.
417
461
.
17.
Eilaghi
,
A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
,
Simmons
,
C. A.
,
Brodland
,
G. W.
, and
Ethier
,
C. R.
, 2010, “
Biaxial Mechanical Testing of Human Sclera
,”
J. Biomechanics
,
43
(
9
), pp.
1696
1701
.
18.
Mortazavi
,
A. M.
,
Simon
,
B. R.
,
Stamer
,
W. D.
, and
Geest
,
J. P. V.
, 2009, “
Drained Secant Modulus for Human and Porcine Peripapillary Sclera Using Unconfined Compression Testing
,”
Exp. Eye Res.
,
89
(
6
), pp.
892
897
.
19.
Battaglioli
,
J. L.
, and
Kamm
,
R. D.
, 1984, “
Measurements of the Compressive Properties of Scleral Tissue
,”
Invest. Ophthalmol. Visual Sci.
,
25
(
1
), pp.
59
65
.
20.
Woo
,
S. L -Y L-Y
.,
Kobayashi
,
A. S.
,
Schlegela
,
W. A.
, and
Lawrence
,
C.
, 1972, “
Nonlinear Material Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
,
14
(
1
), pp.
29
39
.
21.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Burgoyne
,
C. F.
, and
Suh
,
J. K. F.
, 2008, “
Experimental Surface Strain Mapping of Porcine Peripapillary Sclera due to Elevations of Intraocular Pressure
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041017
.
22.
Myers
,
K. M.
,
Cone
,
F. E.
,
Quigley
,
H. A.
,
Gelman
,
S.
,
Pease
,
M. E.
, and
Nguyen
,
T. D.
, 2010, “
The In Vitro Inflation Response of Mouse Sclera
,”
Exp. Eye Res.
,
91
(
6
), pp.
866
875
.
23.
Myers
,
K. M.
,
Coudrillier
,
B.
,
Boyce
,
B. L.
, and
Nguyen
,
T. D.
, 2010, “
The Inflation Response of the Posterior Bovine Sclera
,”
Acta Biomater.
,
6
(
11
), pp.
4327
4335
.
24.
Greene
,
P. R.
, and
Mcmahon
,
T. A.
, 1979, “
Scleral Creep Vs Temperature and Pressure in vitro
,”
Exp. Eye Res.
,
29
(
5
), pp.
527
537
.
25.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Suh
,
J. K. F.
, 2009, “
Peripapillary and Posterior Scleral Mechanics-Part II: Experimental and Inverse Finite Element Characterization
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051011
.
26.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Burgoyne
,
C. F.
, and
Suh
,
J. K. F.
, 2009, “
Peripapillary and Posterior Scleral Mechanics-Part I: Development of an Anisotropic Hyperelastic Constitutive Model
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051012
.
27.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
, 1991, “
Elastography – A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
28.
Odonnell
,
M.
Skovoroda
,
A. R.
Shapo
,
B. M.
and
Emelianov
,
S. Y.
, 1994, “
Internal Displacement and Strain Imaging Using Ultrasonic Speckle Tracking
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
41
(
3
), pp.
314
325
.
29.
Krouskop
,
T. A.
,
Wheeler
,
T. M.
,
Kallel
,
F.
,
Garra
,
B. S.
, and
Hall
,
T.
, 1998, “
Elastic Moduli of Breast and Prostate Tissues under Compression
,”
Ultrason. Imaging
,
20
(
4
), pp.
260
274
. Available at http://www.ncbi.nlm.nih.gov/pubmed/10197347
30.
Suffoletto
,
M. S.
,
Dohi
,
K.
,
Cannesson
,
M.
,
Saba
,
S.
, and
Gorcsan
,
J.
, 2006, “
Novel Speckle-Tracking Radial Strain From Routine Black-and-White Echocardiographic Images to Quantify Dyssynchrony and Predict Response to Cardiac Resynchronization Therapy
,”
Circulation
,
113
(
7
), pp.
960
968
.
31.
Ryan
,
L. K.
, and
Foster
,
F. S.
, 1997, “
Ultrasonic Measurement of Differential Displacement Strain in a Vascular Model
,”
Ultrason. Imaging
,
19
(
1
), pp.
19
38
.
32.
Righetti
,
R.
,
Kallel
,
F.
,
Stafford
,
R. J.
,
Price
,
R. E.
,
Krouskop
,
T. A.
,
Hazle
,
J. D.
, and
Ophir
,
J.
, 1999, “
Elastographic Characterization of HIFU-Induced Lesions in Canine Livers
,”
Ultrasound in Med. Biol.
,
25
(
7
), pp.
1099
1113
.
33.
Kallel
,
F.
,
Ophir
,
J.
,
Magee
,
K.
, and
Krouskop
,
T.
, 1998, “
Elastographic Imaging of Low-Contrast Elastic Modulus Distributions in Tissue
,”
Ultrasound Med. Biol.
,
24
(
3
), pp.
409
425
.
34.
Kallel
,
F.
,
Price
,
R. E.
,
Konofagou
,
E.
, and
Ophir
,
J.
, 1999, “
Elastographic Imaging of the Normal Canine Prostate In Vitro
,”
Ultrason. Imaging
,
21
(
3
), pp.
201
215
.
35.
Bohs
,
L. N.
, and
Trahey
,
G. E.
, 1991, “
A Novel Method for Angle Independent Ultrasonic-Imaging of Blood-Flow and Tissue Motion
,”
IEEE Trans. Biomed. Eng.
,
38
(
3
), pp.
280
286
.
36.
Angelini
,
E. D.
, and
Gerard
,
O.
, 2006, “
Review of Myocardial Motion Estimation Methods From Optical Flow Tracking on Ultrasound Data
,”
2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vols. 1–15, pp. 6337–6340.
37.
Kallel
,
F.
, and
Ophir
,
J.
, 1997, “
A Least-Squares Strain Estimator for Elastography
,”
Ultrason. Imaging
,
19
(
3
), pp.
195
208
. Available at http://www.ncbi.nlm.nih.gov/pubmed/9447668
38.
Nightingale
,
K. R.
,
Palmeri
,
M. L.
,
Nightingale
,
R. W.
, and
Trahey
,
G. E.
, 2001, “
On the Feasibility of Remote Palpation Using Acoustic Radiation Force
,”
J. Acoust. Soc. Am.
,
110
(
1
), pp.
625
634
.
39.
Konofagou
,
E. E.
, and
Hynynen
,
K.
, 2003, “
Localized Harmonic Motion Imaging: Theory, Simulations and Experiments
,”
Ultrasound Med. Biol.
,
29
(
10
), pp.
1405
1413
.
40.
Srinivasan
,
S.
,
Righetti
,
R.
, and
Ophir
,
J.
, 2003, “
Trade-offs Between the Axial Resolution and the Signal-to-Noise Ratio in Elastography
,”
Ultrasound Med. Biol.
,
29
(
6
), pp.
847
866
.
41.
Varghese
,
T.
, and
Ophir
,
J.
, 1997, “
A Theoretical Framework for Performance Characterization of Elastography: The Strain Filter
,”
IEEE Trans. Ultrason.Ferroelectr. Freq. Control
,
44
(
1
), pp.
164
172
.
42.
Skovoroda
,
A. R.
,
Emelianov
,
S. Y.
,
Lubinski
,
M. A.
,
Sarvazyan
,
A. P.
, and
Odonnell
,
M.
, 1994, “
Theoretical-Analysis and Verification of Ultrasound Displacement and Strain Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
41
(
3
), pp.
302
313
.
43.
Varghese
,
T.
,
Bilgen
,
M.
, and
Ophir
,
J.
, 1998, “
Multiresolution Imaging in Elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
45
(
1
), pp.
65
75
.
44.
Varghese
,
T.
,
Ophir
,
J.
,
Konofagou
,
E.
,
Kallel
,
F.
, and
Righetti
,
R.
, 2001, “
Tradeoffs in Elastographic Imaging
,”
Ultrason. Imaging
,
23
(
4
), pp.
216
248
. Available at http://www.ncbi.nlm.nih.gov/pubmed/12051276
45.
Hollman
,
K. W.
,
Emelianov
,
S. Y.
,
Neiss
,
J. H.
,
Jotyan
,
G.
,
Spooner
,
G. J. R.
,
Juhasz
,
T.
,
Kurtz
,
R. M.
, and
O’Donnell
,
M.
, 2002, “
Strain Imaging of Corneal Tissue with an Ultrasound Elasticity Microscope
,”
Cornea
,
21
(
1
), pp.
68
73
.
46.
Ford
,
M. R.
,
Dupps
,
W. J.
,
Rollins
,
A. M.
,
Roy
,
A. S.
, and
Hu
,
Z. L.
, 2011, “
Method for Optical Coherence Elastography of the Cornea
,”
J. Biomed. Optics
,
16
(
1
), p.
016005
.
47.
Cohn
,
N. A.
,
Emelianov
,
S. Y.
,
Lubinski
,
M. A.
, and
ODonnell
,
M.
, 1997, “
An Elasticity Microscope. 1. Methods
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
44
(
6
), pp.
1304
1319
.
48.
Weinstein
,
E.
, and
Weiss
,
A. J.
, 1984, “
Fundamental Limitations in Passive Time-Delay Estimation. 2. Wideband Systems
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
32
(
5
), pp.
1064
1078
.
49.
Jensen
,
J. A.
, 1996, “
Field: A Program for Simulating Ultrasound Systems
,” 10th Nordicbaltic Conference on Biomedical Imaging, Vol. 4(1), pp.
351
353
.
50.
Jensen
,
J. A.
, and
Svendsen
,
N. B.
, 1992, “
Calculation of Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
2
), pp.
262
267
.
51.
Zagzebski
,
J. A.
,
Chen
,
J. F.
,
Dong
,
F.
, and
Wilson
,
T.
, 1999, “
Intervening Attenuation Affects First-Order Statistical Properties of Ultrasound Echo Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
46
(
1
), pp.
35
40
.
52.
Komai
,
Y.
, and
Ushiki
,
T.
, 1991, “
The 3-Dimensional Organization of Collagen Fibrils in the Human Cornea and Sclera
,”
Invest. Ophthalmol. Visual Sci.
,
32
(
8
), pp.
2244
2258
.
53.
Haider
,
M. A.
, and
Guilak
,
F.
, 2007, “
Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage
,”
Comput. Methods Applied Mech. Eng.
,
196
(
31-32
), pp.
2999
3010
.
54.
Ma
,
J.
,
Narayanan
,
H.
,
Garikipati
,
K.
,
Grosh
,
K.
, and
Arruda
,
E. M.
, 2010, “
Experimental and Computational Investigation of Viscoelasticity of Native and Engineered Ligament and Tendon
,”
Proc. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics
, Vol.
16
, pp.
3
17
.
55.
Greene
,
P. R.
, 1980, “
Mechanical Considerations in Myopia - Relative Effects of Accommodation, Convergence, Intraocular-Pressure, and the Extra-Ocular Muscles
,”
Am. J. Optom. Physiol. Opt.
,
57
(
12
), pp.
902
914
.
56.
Chen
,
X. C.
,
Zohdy
,
M. J.
,
Emelianov
,
S. Y.
, and
O’Donnell
,
M.
, 2004, “
Lateral Speckle Tracking Using Synthetic Lateral Phase
,”
IEEEeee Trans. Ultrason. Ferroelectr. Freq. Control
,
51
(
5
), pp.
540
550
.
57.
Huang
,
Y.
, and
Meek
,
K. M.
, 1999, “
Swelling Studies on the Cornea and Sclera: The Effects of pH and Ionic Strength
,”
Biophys. J.
,
77
(
3
), pp.
1655
1665
.
You do not currently have access to this content.