One possible treatment for cerebral aneurysms is a porous tubular structure, similar to a stent, called a flow diverter. A flow diverter can be placed across the neck of a cerebral aneurysm to induce the cessation of flow and initiate the formation of an intra-aneurysmal thrombus. This excludes the aneurysm from the parent artery and returns the flow of blood to normal. Previous flow diverting devices have been analyzed to determine optimal characteristics, such as braiding angle and wire diameter. From this information, a new optimized device was designed to achieve equivalent hemodynamic performance to the previous best device, but with better longitudinal flexibility to preserve physiological arterial configuration. The new device was tested in vitro in an elastomeric replica of the rabbit elastase induced aneurysm model and is now in the process of being tested in vivo. Particle image velocimetry was utilized to determine the velocity field in the plane of symmetry of the model under pulsatile flow conditions. Device hemodynamic performance indices such as the hydrodynamic circulation were evaluated from the velocity fields. Comparison of these indices with the previous best device and a control shows that the significant design changes of the device did not change its hemodynamic attributes (p > 0.05).

References

References
1.
Walcott
,
B. P.
,
Pisapia
,
J. M.
,
Nahed
,
B. V.
,
Kahle
,
K. T.
, and
Ogilvy
,
C. S.
, 2011, “
Early Experience With Flow Diverting Endoluminal Stents for the Treatment of Intracranial Aneurysms
,”
J. Clin. Neurosci.
,
18
(
7
), pp.
891
894
.
2.
Fischer
,
S.
,
Vajda
,
Z.
,
Aguilar Perez
,
M.
,
Schmid
,
E.
,
Hopf
,
N.
,
Bäzner
,
H.
, and
Henkes
,
H.
, 2011, “
Pipeline Embolization Device (PED) for Neurovascular Reconstruction: Initial Experience in the Treatment of 101 Intracranial Aneurysms and Dissections
,”
Neuroradiology
,
54
(
4
), pp.
369
382
.
3.
Wong
,
G. K.
,
Kwan
,
M. C.
,
Ng
,
R. Y.
,
Yu
,
S. C.
, and
Poon
,
W. S.
, 2011, “
Flow Diverters for Treatment of Intracranial Aneurysms: Current Status and Ongoing Clinical Trials
,”
J. Clin. Neurosci.
,
18
(
6
), pp.
737
740
.
4.
Turjman
,
F.
,
Acevedo
,
G.
,
Moll
,
T.
,
Duquesnel
,
J.
,
Eloy
,
R.
, and
Sindou
,
M.
, 1993, “
Treatment of Experimental Carotid Aneurysms by Endoprosthesis Implantation: Preliminary Report
,”
Neurol. Res.
,
15
, pp.
181
184
.
5.
Geremia
,
G.
,
Haklin
,
M.
, and
Brennecke
,
L.
, 1994, “
Embolization of Experimentally Created Aneurysms With Intravascular Stent Devices
,”
AJNR Am. J. Neuroradiol.
,
15
, pp.
1223
12231
.
6.
Wakhloo
,
A. K.
,
Schellhammer
,
F.
,
de Vries
,
J.
,
Haberstroh
,
J.
, and
Schumacher
,
M.
, 1994, “
Self-Expanding and Balloon-Expandable Stents in the Treatment of Carotid Aneurysms: An Experimental Study in a Canine Model
,”
AJNR Am. J. Neuroradiol.
,
15
(
3
), pp.
493
502
.
7.
Wakhloo
,
A. K.
,
Giuseppe
,
L.
,
Lieber
,
B. B.
, and
Hopkins
,
L. N.
, 1998, “
Stents for Intracranial Aneurysms: The Beginning of a New Endovascular Era?
,”
Neurosurgery
,
43
(
2
), pp.
377
379
.
8.
Marks
,
M. P.
,
Dake
,
M. D.
,
Steinber
,
G. K.
,
Norbash
,
A. M.
, and
Lane
,
B.
, 1994, “
Stent Placement for Arterial and Venous Cerebrovascular Disease: Preliminary Expeirnce
,”
Radiology
,
191
, pp.
441
446
.
9.
Lylyk
,
P.
,
Miranda
,
C.
,
Ceratto
,
R.
,
Ferrario
,
A.
,
Scrivano
,
E.
,
Luna
,
H. R.
,
Berez
,
A. L.
,
Tran
,
Q.
, and
Fiorella
,
D.
, 2009, “
Curative Endovascular Reconstruction of Cerebral Aneurysms With the Pipeline Embolization Device: The Buenos Aires Expiernce
,”
Neurosurgery
,
64
(
4
), pp.
632
643
.
10.
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2007, “
in vitro Evaluation of Flow Divertors in an Elastase-Induced Saccular Aneurysm Model in Rabbit
,”
J. Biomech. Eng.
,
129
, pp.
863
872
.
11.
Sadasivan
,
C.
,
Cesar
,
L.
,
Seong
,
J.
,
Rakian
,
A.
,
Hao
,
Q.
,
Tio
,
F. O.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2009, “
An Original Flow Diversion Device for the Treatment of Intracranial Aneurysms: Evaluation in the Rabbit Elastase-Induced Model
,”
Stroke
,
40
(
3
), pp.
952
958
.
12.
Trager
,
A. L.
,
Sadasivan
,
C.
,
Seong
,
J.
, and
Lieber
,
B. B.
, 2009, “
Correlation Between Angiographic and Particle Image Velocimetry Quantifications of Flow Diverters in an in vitro Model of Elastase-Induced Rabbit Aneurysms
,”
J. Biomech. Eng.
,
131
(
3
), p.
034506
.
13.
Sadasivan
,
C.
,
Cesar
,
L.
,
Seong
,
J.
,
Wakhloo
,
A. K.
,
Lieber
,
B. B.
, 2009, “
Treatment of Rabbit Elastase-Induced Aneurysm Models by Flow Diverters: Development of Quantifiable Indexes of Device Performance Using Digital Subtraction Angiography
,”
IEEE Trans. Med. Imaging
,
28
(
7
), pp.
1117
1125
.
14.
Seong
,
J.
,
Sadasivan
,
C.
,
Onizuka
,
M.
,
Gounis
,
M. J.
,
Christian
,
F.
,
Miskolczi
,
L.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2005, “
Morphology of Elastase-Induced Cerebral Aneurysm Model in Rabbit and Rapid Prototyping of Elastomeric Transparent Replicas
,”
Biorheology
,
42
(
5
): pp.
345
361
.
15.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
,
Ajay
,
K.
,
Wakhloo
,
A. K.
, 2002, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
30
, pp.
768
777
.
16.
Marinkovic
,
S. V.
, and
Gibo
,
H.
, 1993, “
The Surgical Anatomy of the Perforating Branches of the Basilar Artery
,”
Neurosurgery
,
33
, pp.
80
87
.
17.
Marinković
,
S.
,
Gibo
,
H.
,
Brigante
,
L.
,
Nikodijević
,
I.
, and
Petrović
,
P.
, 1999, “
The Surgical Anatomy of the Perforating Branches of the Anterior Choroidal Artery
,”
Surg. Neurol.
,
52
(
1
), pp.
30
36
.
18.
Kulcsár
,
Z.
,
Ernemann
,
U.
,
Wetzel
,
S. G.
,
Bock
,
A.
,
Goericke
,
S.
,
Panagiotopoulos
,
V.
,
Forsting
,
M.
,
Ruefenacht
,
D. A.
, and
Wanke
,
I.
, 2010, “
High-Profile Flow Diverter (Silk) Implantation in the Basilar Artery: Efficacy in the Treatment of Aneurysms and the Role of the Perforators
,”
Stroke
,
41
(
8
), pp.
1690
1696
.
You do not currently have access to this content.