Despite the importance of sliding contact in diarthrodial joints, only a limited number of studies have addressed this type of problem, with the result that the mechanical behavior of articular cartilage in daily life remains poorly understood. In this paper, a finite element formulation is developed for the sliding contact of biphasic soft tissues. The augmented Lagrangian method is used to enforce the continuity of contact traction and fluid pressure across the contact interface. The resulting method is implemented in the commercial software COMSOL Multiphysics. The accuracy of the new implementation is verified using an example problem of sliding contact between a rigid, impermeable indenter and a cartilage layer for which analytical solutions have been obtained. The new implementation’s capability to handle a complex loading regime is verified by modeling plowing tests of the temporomandibular joint (TMJ) disc.

References

References
1.
Spilker
,
R. L.
,
Nickel
,
J. C.
, and
Iwasaki
,
L. R.
, 2009, “
A Biphasic Finite Element Model of In Vitro Plowing Tests of the Temporomandibular Joint Disc
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1152
1164
.
2.
Nickel
,
J. C.
,
Spilker
,
R. L.
,
Iwasaki
,
L. R.
,
Gonzalez
,
Y.
,
McCall
,
W. D.
,
Ohrbach
,
R.
,
Beatty
,
M. W.
, and
Marx
,
D.
, 2009, “
Static and Dynamic Mechanics of the TMJ: Plowing Forces, Joint Load, and Tissue Stress
,”
Orthod. Craniofac. Res.
,
12
(
3
), pp.
159
167
.
3.
Lizhang
,
J.
,
Fisher
,
J.
,
Jin
,
Z.
,
Burton
,
A.
, and
Williams
,
S.
, 2010, “
The Effect of Contact Stress on Cartilage Friction, Deformation and Wear
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
5
), pp.
461
475
.
4.
Chen
,
X.
,
Chen
,
Y.
, and
Hisada
,
T.
, 2005, “
Development of a Finite Element Procedure of Contact Analysis for Articular Cartilage With Large Deformation Based on the Biphasic Theory
,”
JSME Int. J., Ser. C
,
48
(
4
), pp.
537
546
.
5.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
, 2010, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.
6.
Ateshian
,
G. A.
, and
Wang
,
H.
, 1995, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.
7.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1998, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
,
31
(
2
), pp.
165
169
.
8.
Warner
,
M. D.
,
Taylor
,
W. R.
, and
Clift
,
S. E.
, 2001, “
Finite Element Biphasic Indentation of Cartilage: A Comparison of Experimental Indenter and Physiological Contact Geometries
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
215
(
5
), pp.
487
496
.
9.
Federico
,
S.
,
Rosa
,
G. L.
,
Herzog
,
W.
, and
Wu
,
J. Z.
, 2004, “
Effect of Fluid Boundary Conditions on Joint Contact Mechanics and Applications to the Modeling of Osteoarthritic Joints
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
220
225
(erratum: 2005, ASME J. Biomech. Eng., 127, pp. 205–209).
10.
Pawaskar
,
S. S.
,
Fisher
,
J.
, and
Jin
,
Z.
, 2010, “
Robust and General Method for Determining Surface Fluid Flow Boundary Conditions in Articular Cartilage Contact Mechanics Modeling
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031001
.
11.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
,
111
(
1
), pp.
78
87
.
12.
Guo
,
H.
, and
Spilker
,
R. L.
, 2011, “
Biphasic Finite Element Modeling of Hydrated Soft Tissue Contact Using an Augmented Lagrangian Method
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
111001
.
13.
Guo
,
H.
, and
Spilker
,
R. L.
, 2011, “
An Augmented Lagrange Finite Element Implementation for 2D Axisymmetric Contact of Biphasic Tissues
,”
Proceedings of the 37th Annual Northeast Bioengineering Conference
, Rensselaer Polytechnic Institute, Troy, NY.
14.
Guo
,
H.
,
Maher
,
S. A.
, and
Spilker
,
R. L.
, 2012, “
Biphasic Finite Element Analysis of the Human Knee Joint
,” Transactions of the Orthopaedic Research Society Annual Meeting, San Francisco, CA.
15.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I–Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
1
), pp.
25
46
.
16.
COMSOL, 2011, COMSOL documentation, COMSOL, Inc., Burlington, MA.
17.
Simo
,
J. C.
, and
Laursen
,
T. A.
, 1992, “
An Augmented Lagrangian Treatment of Contact Problems Involving Friction
,”
Comput. Struct.
,
42
(
1
), pp.
97
116
.
18.
Beatty
,
M. W.
,
Bruno
,
M. J.
,
Iwasaki
,
L. R.
, and
Nickel
,
J. C.
, 2001, “
Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk
,”
J. Biomed. Mater. Res.
,
57
(
1
), pp.
25
34
.
19.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
, 2006, “
Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
,
39
(
2
), pp.
312
322
.
20.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension—Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.
21.
Snider
,
G. R.
,
Lomakin
,
J.
,
Singh
,
M.
,
Gehrke
,
S. H.
, and
Detamore
,
M. S.
, 2008, “
Regional Dynamic Tensile Properties of the TMJ Disc
,”
J. Dent. Res.
,
87
(
11
), pp.
1053
1057
.
22.
Detamore
,
M. S.
,
Orfanos
,
J. G.
,
Almarza
,
A. J.
,
French
,
M. M.
,
Wong
,
M. E.
, and
Athanasiou
,
K. A.
, 2005, “
Quantitative Analysis and Comparative Regional Investigation of the Extracellular Matrix of the Porcine Temporomandibular Joint Disc
,”
Matrix Biol.
,
24
(
1
), pp.
45
57
.
23.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
You do not currently have access to this content.