A detailed understanding of the changes in load transfer due to implantation is necessary to identify potential failure mechanisms of orthopedic implants. Computational finite element (FE) models provide full field data on intact and implanted bone structures, but their validity must be assessed for clinical relevance. The aim of this study was to test the validity of FE predicted strain distributions for the intact and implanted pelvis using the digital image correlation (DIC) strain measurement technique. FE models of an in vitro hemipelvis test setup were produced, both intact and implanted with an acetabular cup. Strain predictions were compared to DIC and strain rosette measurements. Regression analysis indicated a strong linear relationship between the measured and predicted strains, with a high correlation coefficient (R = 0.956 intact, 0.938 implanted) and a low standard error of the estimate (SE = 69.53 με, 75.09 με). Moreover, close agreement between the strain rosette and DIC measurements improved confidence in the validity of the DIC technique. The FE model therefore was supported as a valid predictor of the measured strain distribution in the intact and implanted composite pelvis models, confirming its suitability for further computational investigations.

References

References
1.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.
2.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation, Sensitive Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.
3.
Zhang
,
Q. H.
,
Wang
,
J. Y.
,
Lupton
,
C.
,
Adegbile
,
P. H.
,
Guo
,
Z. X.
,
Liu
,
Q.
, and
Tong
,
J.
, 2010, “
A Subject-Specific Pelvic Bone Model and Its Application to Cemented Acetabular Replacements
,”
J. Biomech.
,
43
(
14
), pp.
2722
2727
.
4.
Pal
,
B.
,
Gupta
,
S.
,
New
,
A. M. R.
, and
Browne
,
M.
, 2010, “
Strain and Micromotion in Intact and Resurfaced Composite Femurs: Experimental and Numerical Investigations
,”
J. Biomech.
,
43
(
10
), pp.
1923
1930
.
5.
Dally
,
J. W.
, and
Railey
,
W. F.
, 1991,
Experimental Stress Analysis
,
3rd ed.
,
McGraw-Hill College
,
Boston, MA
.
6.
Miles
,
A. W.
, and
McNamee
,
P. B.
, 1989, “
Strain Gauge and Photoelastic Evaluation of the Load Transfer in the Pelvis in Total Hip Replacement: The Effect of the Position of the Axis of the Rotation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
203
(
2
), pp.
103
107
.
7.
Everitt
,
H.
,
Evans
,
S. L.
,
Holt
,
C. A.
,
Bigsby
,
R.
, and
Khan
,
I.
, 2010, “
Acetabular Component Deformation Under Rim Loading Using Digital Image Correlation and Finite Element Methods
,”
Appl. Mech. Mater.
,
24–25
, pp.
275
280
.
8.
Sztefek
,
P.
,
Vanleene
,
M.
,
Olsson
,
R.
,
Collinson
,
R.
,
Pitsillides
,
A. A.
, and
Shefelbine
,
S.
, 2010, “
Using Digital Image Correlation to Determine Bone Surface Strains During Loading and After Adaptation of Mouse Tibia
,”
J. Biomech.
,
43
(
4
), pp.
599
605
.
9.
Tayton
,
E.
,
Evans
,
S.
, and
O’Doherty
,
D.
, 2010, “
Mapping the Strain Distribution on the Proximal Femur With Titanium and Flexible Stemmed Implants Using Digital Image Correlation
,”
J. Bone Joint Surg. Br.
,
92
(
8
), pp.
1176
1181
.
10.
Dickinson
,
A. S.
,
Taylor
,
A. C.
,
Ozturk
,
H.
, and
Browne
,
M.
, 2011, “
Experimental Validation of a Finite Element Model of the Proximal Femur Using Digital Image Correlation and a Composite Bone Model
,”
ASME J. Biomech. Eng.
,
133
(
1
), pp.
1
6
.
11.
Verhulp
,
E.
,
van Ritbergen
,
B.
, and
Huiskes
,
R.
, 2004, “
A Three-Dimensional Digital Image Correlation Technique for Strain Measurements in Microstructures
,”
J. Biomech.
,
37
(
9
), pp.
1313
1320
.
12.
Tiossi
,
R.
,
Lin
,
L.
,
Rodrigues
,
R. C. S.
,
Heo
,
Y. C.
,
Conrad
,
H. J.
,
Mattos
,
M. G. C.
,
Ribeiro
,
R. F.
, and
Fok
,
A. S. L.
, 2011, “
Digital Image Correlation Analysis of the Load Transfer by Implant-Supported Restorations
,”
J. Biomech.
,
44
(
6
), pp.
1008
1013
.
13.
Zhang
,
D.
,
Eggliton
,
C. D.
, and
Arola
,
D. D.
, 2002, “
Evaluating the Mechanical Behavior of Arterial Tissue Using Digital Image Correlation
,”
Exp. Mech.
,
42
, pp.
409
416
.
14.
Brown
,
A. N.
,
McKinley
,
T. O.
, and
Bay
,
B. K.
, 2002, “
Trabecular Bone Strain Changes Associated With Subchondral Bone Defects of the Tibia Plateau
,”
J. Orthop. Trauma
,
16
(
9
), pp.
638
643
.
15.
Zhang
,
D.
, and
Arola
,
D. D.
, 2004, “
Application of Digital Image Correlation to Biological Tissues
,”
J. Biomed. Optics
,
9
(
4
), pp.
691
699
.
16.
Thompson
,
M. S.
,
Schell
,
H.
,
Lienau
,
J.
, and
Duda
,
G. N.
, 2007, “
Digital Image Correlation: A Technique for Determining Local Mechanical Conditions Within Early Bone Callus
,”
Med. Eng. Phys.
,
29
(
7
), pp.
820
823
.
17.
Moerman
,
K. M.
,
Holt
,
C. A.
,
Evans
,
S. L.
, and
Simms
,
C. K.
, 2009, “
Digital Image Correlation and Finite Element Modelling as a Method to Determine Mechanical Properties of Human Soft Tissue In-Vivo
,”
J. Biomech.
,
42
(
8
), pp.
1150
1153
.
18.
Evans
,
S. L.
, and
Holt
,
C. A.
, 2009, “
Measuring the Mechanical Properties of Human Skin In-Vivo Using Digital Image Correlation and Finite Element Modelling
,”
J. Strain Anal. Eng. Design
,
44
(
5
), pp.
337
345
.
19.
Tanasic
,
I.
,
Milic-Lemic
,
A.
,
Tihacek-Sojic
,
L.
,
Stancic
,
I.
, and
Mitrovic
,
N.
, 2011, “
Analysis of the Compressive Strain Below the Removable and Fixed Prosthesis in the Posterior Mandible Using a Digital Image Correlation Method
,”
Biomech. Modelling Mechano.
,
11
(
6
), pp.
751
758
.
20.
Dickinson
,
A. S.
,
Taylor
,
A. C.
, and
Browne
,
M.
, 2012, “
The Influence of Acetabular Cup Material on Pelvis Cortex Surface Strains, Measured Using Digital Image Correlation
,”
J. Biomech.
,
45
(
4
), pp.
719
723
.
21.
Bay
,
B. K.
, 1995, “
Texture Correlation: A Method for the Measurement of Detailed Strain Distributions Within Trabecular Bone
,”
J. Orthop. Res.
,
13
(
2
), pp.
258
267
.
22.
Christopher
,
L. G.
,
Qing
,
X.
,
Setton
,
L. A.
, and
Hsu
,
E. W.
, 2003, “
A First-Order Texture Correlation Algorithm and Image Roughness Parameter to Quantify Soft Tissue Deformation Using MRI
, Summer Bioengineering Conference,
Key Biscayne
,
Florida
, June 25–29.
23.
Sviridov
,
A. P.
,
Ulissi
,
Z.
,
Chernomordik
,
V.
,
Hassan
,
M.
, and
Gandjbakhche
,
A. H.
, 2006, “
Visualization of Biological Texture Using Correlation Coefficient Images
,”
J. Biomed. Optics
,
11
(
6
), p.
060504
.
24.
Liu
,
L.
, and
Morgan
,
E. F.
, 2007, “
Accuracy and Precision of Digital Volume Correlation in Quantifying Displacements and Strains in Trabecular Bone
,”
J. Biomech.
,
40
(
15
), pp.
3516
3520
.
25.
Bremand
,
F.
,
Germaneau
,
A.
,
Doumalin
,
P.
, and
Dupre
,
J. C.
, 2008, “
Study of Mechanical Behaviour of Cancellous Bone by Digital Volume Correlation and X-Ray Micro-Computed Tomography
,”
Proceedings of XIth International Congress and Exposition
,
Orlando
,
Florida, USA
, June 2–5.
26.
Frost
,
H. M.
, 1990, “
Skeletal Structural Adaptations to Mechanical Usage (SATMU): 2. Redefining Wolff’s Law: The Remodeling Problem
,”
Anat. Rec.
,
224
(
4
), pp.
414
422
.
27.
Lewinnek
,
G. E.
,
Lewis
,
J. L.
,
Tarr
,
R.
,
Compere
,
C. L.
, and
Zimmerman
,
J. R.
, 1978, “
Dislocations After Total Hip-Replacement Arthroplasties
,”
J. Bone Joint Surg. Am.
,
60
(
2
), pp.
217
220
.
28.
Janssen
,
D.
,
Zwartele
,
R. E.
,
Doets
,
H. C.
, and
Verdonschot
,
N.
, 2009, “
Computational Assessment of Press-Fit Acetabular Implant Fixation: The Effect of Implant Design, Interference Fit, Bone Quality, and Frictional Properties
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
1
), pp.
65
75
.
29.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hailee
,
E.
, and
Morlock
,
M. M.
, 2001, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions: A Finite Element Investigation
,”
J. Biomech.
,
34
(
1
), pp.
113
120
.
30.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
31.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer Across the Pelvis Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.
32.
Phillips
,
A. T. M.
,
Pankaj
,
P.
,
Howie
,
C. R.
,
Usmani
,
A. S.
, and
Simpson
,
A. H. R. W.
, 2007, “
Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions
,”
Med. Eng. Phys.
,
29
(
7
) pp.
739
748
.
33.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hailee
,
E.
,
Bergmann
,
G.
, and
Morlock
,
M. M.
, 2000, “
Interfacial Conditions Between a Press-Fit Acetabular Cup and Bone During Daily Activities: Implications for Achieving Bone In-Growth
,”
J. Biomech.
,
33
(
11
), pp.
1471
1477
.
34.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
, 2000, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
,
33
(
12
), pp.
1611
1618
.
35.
Vic-3D Testing Guide
2009, Correlated Solutions Inc., SC, USA.
36.
Lionberger
,
D.
,
Walker
,
P. S.
, and
Granholm
,
J.
, 1985, “
Effect of Prosthetic Acetabular Replacement on Strains in the Pelvis
,”
J. Orthop. Res.
,
3
(
3
), pp.
372
379
.
37.
Massin
,
P.
,
Vandenbussche
,
E.
,
Landjerit
,
B.
, and
Augereau
,
B.
, 1996, “
Experimental Study of Periacetabular Deformations Before and After Implantation of Hip Prosthesis
,”
J. Biomech.
,
29
(
1
), pp.
53
61
.
38.
Wright
,
J. M.
,
Pellicci
,
P. M.
,
Salvati
,
E. A.
,
Ghelman
,
B.
,
Roberts
,
M. M.
, and
Koh
,
J. L.
, 2001, “
Bone Density Adjacent to Press-Fit Acetabular Components: A Prospective Analysis With Quantitative Computer Tomography
,”
J. Bone Joint Surg. Am.
,
83
(
4
), pp.
529
536
.
39.
Wilkinson
,
J. M.
,
Peel
,
N. F.
,
Elson
,
R. A.
,
Stockley
,
I.
, and
Eastell
R.
, 2001, “
Measuring Bone Mineral Density of the Pelvis and Proximal Femur After Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
,
83
(
2
), pp.
283
288
.
40.
Laursen
,
M. B.
,
Nielsen
,
P. T.
, and
Soballe
,
K.
, 2007, “
Bone Remodeling Around HA Coated Acetabular Cup
,”
Int. Orthop.
,
31
(
2
), pp.
199
204
.
41.
Meneghini
,
R. M.
,
Ford
,
K. S.
,
McCollough
,
C. H.
,
Hanssen
,
A. D.
, and
Lewallen
,
D. G.
, 2010, “
Bone Remodelling Around Porous Metal Cementless Acetabular Component
,”
J. Arthroplasty
,
25
(
5
), pp.
741
747
.
42.
Levenston
,
M. E.
,
Beaupre
,
G. S.
,
Schurman
,
D. J.
, and
Carter
D. R.
, 1993, “
Computer Simulations of Stress-Related Bone Remodeling Around Noncemented Acetabular Components
,”
J. Arthroplasty
,
8
(
6
), pp.
595
605
.
43.
Thompson
,
M. S.
,
Northmore-Ball
,
M. D.
, and
Tanner
,
K. E.
, 2002, “
Effect of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis
,”
Inst. Mech. Eng., Part H: J. Eng. Med.
,
216
(
4
), pp.
237
245
.
44.
Manley
,
M. T.
,
Ong
,
K. L.
, and
Kurtz
,
S. M.
, 2006, “
The Potential for Bone Loss in Acetabular Structures Following THA
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
246
253
.
45.
Stolk
,
J.
,
Verdonschot
,
N.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Huiskes
,
R.
, 2002, “
Finite Element and Experimental Model of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-clinical Tests
,”
J. Biomech.
,
35
(
4
), pp.
499
510
.
46.
Waide
,
D.
,
Cristofolini
,
L.
,
Stolk
,
J.
,
Verdonschot
,
N.
, and
Toni
,
A.
, 2003, “
Experimental Investigations of Bone Remodelling Using Composite Femurs
,”
Clin. Biomech.
,
18
(
6
), pp.
523
536
.
47.
Cristofolini
,
L.
,
Erani
,
P.
,
Juszczyk
,
E. B.
,
Ohashi
,
H.
,
Iida
,
S.
,
Minato
,
I.
, and
Viceconti
,
M.
, 2010, “
Effect of Undersizing on the Long-Term Stability of the Exeter Hip Stem: A Comparative In Vitro Study
,”
Clin. Biomech.
,
25
(
9
), pp.
899
908
.
48.
Grant
,
J. A.
,
Bishop
,
N. E.
,
Gotzen
,
N.
,
Sprecher
,
C.
,
Honl
,
M.
, and
Morlock
,
M. M.
, 2007, “
Artificial Composite Bone As a Model of Human Trabecular Bone: The Implant Bone Interface
,”
J. Biomech.
,
40
(
5
), pp.
1158
1164
.
49.
Bolland
,
B. J. R. F.
,
New
,
A. M. R.
,
Madabhushi
,
S. P. G.
,
Oreffo
,
R. O. C.
, and
Dunlop
,
D. G.
, 2007, “
Vibration Assisted Bone-Graft Compaction in Impaction Bone Grafting of the Femur
,”
J. Bone Joint Surg. Br.
,
89
(
5
), pp.
686
692
.
50.
Bougherara
,
H.
,
Zdero
,
R.
,
Mahboob
,
Z.
,
Dubov
,
A.
,
Shah
,
S.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanics of a Validated Finite Element Model of Stress Shielding in a Novel Hybrid Total Knee Replacement
,”
Proc. IMechE, Part H: J. Eng. Med.
,
224
(
10
), pp.
1209
1219
.
51.
Grover
,
P.
,
Albert
,
C.
,
Wang
,
M.
, and
Harris
,
G. F.
, 2011, “
Mechanical Characterization of Fourth Generation Composite Humerus
,”
Proc. IMechE, Part H: J. Eng. Med.
,
225
(
12
), pp.
1169
1176
.
52.
Kaiser
,
M. M.
,
Wessel
,
L. M.
,
Zachert
,
G.
,
Stratmann
,
C.
,
Eggert
,
R.
,
Gros
,
N.
,
Hessing
,
M. S.
,
Kienast
,
B.
, and
Rapp
,
M.
, 2011, “
Biomechanical Analysis of a Synthetic Femur Spiral Fracture Model: Influence of Different Materials on the Stiffness in Flexible Intramedullary Nailing
,”
Clin. Biomech.
,
26
(
6
), pp.
592
597
.
53.
Fottner
,
A.
,
Schmid
,
M.
,
Birkenmaier
,
C.
,
Mazoochian
,
F.
,
Plitz.
,
W.
, and
Jansson
,
V.
, 2009, “
Biomechanical Evaluation of Two Types of Short-Stemmed Hip Prostheses Compared to Trust Plate Prosthesis by Three Dimensional Measurement of Micromotion
,”
Clin. Biomech.
,
24
(
5
),
429
434
.
You do not currently have access to this content.