Ventricular assist devices (VADs) have already helped many patients with heart failure but have the potential to assist more patients if current problems with blood damage (hemolysis, platelet activation, thrombosis and emboli, and destruction of the von Willebrand factor (vWf)) can be eliminated. A step towards this goal is better understanding of the relationships between shear stress, exposure time, and blood damage and, from there, the development of numerical models for the different types of blood damage to enable the design of improved VADs. In this study, computational fluid dynamics (CFD) was used to calculate the hemodynamics in three clinical VADs and two investigational VADs and the shear stress, residence time, and hemolysis were investigated. A new scalar transport model for hemolysis was developed. The results were compared with in vitro measurements of the pressure head in each VAD and the hemolysis index in two VADs. A comparative analysis of the blood damage related fluid dynamic parameters and hemolysis index was performed among the VADs. Compared to the centrifugal VADs, the axial VADs had: higher mean scalar shear stress (sss); a wider range of sss, with larger maxima and larger percentage volumes at both low and high sss; and longer residence times at very high sss. The hemolysis predictions were in agreement with the experiments and showed that the axial VADs had a higher hemolysis index. The increased hemolysis in axial VADs compared to centrifugal VADs is a direct result of their higher shear stresses and longer residence times. Since platelet activation and destruction of the vWf also require high shear stresses, the flow conditions inside axial VADs are likely to result in more of these types of blood damage compared with centrifugal VADs.

References

References
1.
WHO, 2007, “Fact Sheet No. 317.”
2.
Lloyd-Jones
,
D.
,
Adams
,
R. J.
,
Brown
,
T. M.
,
Carnethon
,
M.
, and
Dai
,
S.
, 2010, “
Heart Disease and Stroke Statisitics 2010 Update: A Report From the American Heart Association
,”
Circulation
,
121
, pp.
e46
e215
.
3.
Warrell
,
D. A.
,
Cox
,
T. M.
,
Firth
,
J. D.
, and
Benz
,
E. J.
, 2005,
Oxford Textbook of Medicine
,
4th ed.
,
Oxford University Press
,
Oxford
.
4.
Health Resources and Services Administration, U. S. Department of Health and Human Services, 2009, “Organ Procurement and Transplant Network.”
5.
Allen
,
G. S.
,
Murray
,
K. D.
, and
Olsen
,
D. B.
, 1997, “
The Importance of Pulsatile and Nonpulsatile Flow in the Design of Blood Pumps
,”
Artif. Organs
,
21
, pp.
922
928
.
6.
Song
,
X.
,
Throckmorton
,
A. L.
,
Untaroiu
,
A.
,
Patel
,
S.
,
Allaire
,
P. E.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
, 2003, “
Axial Flow Blood Pumps
,”
ASAIO J.
,
49
, pp.
355
364
.
7.
Thompson
,
L. O.
,
Loebe
,
M.
, and
Noon
,
G. P.
, 2003, “
What Price Support? Ventricular Assist Device Induced Systemic Response
,”
ASAIO J.
,
49
, pp.
518
526
.
8.
Genovese
,
E. A.
,
Dew
,
M. A.
,
Teuteberg
,
J. J.
,
Simon
,
M. A.
,
Kay
,
J. S. M. P.
,
Bhama
,
J. K.
,
Bermudez
,
C. A.
,
Lockard
,
K. L.
,
Winowich
,
S.
, and
Kormos
,
R. L.
, 2009, “
Incidence and Patterns of Adverse Event Onset During the First 60 Days After Ventricular Assist Device Implantation
,”
Ann. Thorac. Surg.
,
88
, pp.
1162
1170
.
9.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
, 1972, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
, pp.
257
272
.
10.
Kuypers
,
F. A.
, 1998, “
Red Cell Membrane Damage
,”
J. Heart Valve Dis.
,
7
, pp.
387
395
.
11.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prosthesis—in vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
, pp.
300
306
.
12.
Stassen
,
J. M.
,
Arnout
,
J.
, and
Deckmyn
,
H.
, 2004, “
The Hemostatic System
,”
Curr. Med. Chem.
,
11
, pp.
2245
2260
. Available at: http://www.ingentaconnect.com/content/ben/cmc/2004/00000011/00000017/art00002http://www.ingentaconnect.com/content/ben/cmc/2004/00000011/00000017/art00002
13.
Varga-Szabo
,
D.
,
Pleines
,
I.
, and
Nieswandt
,
B.
, 2008, “
Cell Adhesion Mechanisms in Platelets
,”
Arterioscler., Thromb., Vasc. Biol.
,
28
, pp.
403
412
.
14.
Sorensen
,
E. N.
,
Burgreen
,
G. W.
,
Wagner
,
W. R.
, and
Antaki
,
J. F.
, 1999, “
Computational Simulation of Platelet Deposition and Activation: I. Model Developement and Properties
,”
Ann. Biomed. Eng.
,
27
, pp.
436
448
.
15.
Hellums
,
J. D.
, 1994, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
, pp.
445
455
.
16.
Wurzinger
,
L. J.
,
Opitz
,
R.
,
Blasberg
,
P.
, and
Schmid-Schonbein
,
H.
, 1985, “
Platelet and Coagulation Parameters Following Millisecond Exposure to Laminar Shear Stress
,”
Thromb. Haemostasis
,
54
, pp.
381
386
.
17.
Sakariassen
,
K. S.
,
Holme
,
P. A.
,
Orvin
,
U.
,
Barstad
,
R. M.
,
Solum
,
N. O.
, and
Brosstad
,
F. R.
, 1998, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation in Native Human Blood
,”
Thromb. Res.
,
92
, pp.
S33
S41
.
18.
Zhang
,
J.-N.
,
Bergeron
,
A. L.
,
Yu
,
Q.
,
Sun
,
C.
,
McBride
,
L.
,
Bray
,
P. F.
, and
Dong
,
J. F.
, 2003, “
Duration of Exposure to High Fluid Shear Stress is Critical in Shear-Induced Platelet Activation-Aggregation
,”
Thromb. Haemostasis
,
90
, pp.
672
678
.
19.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
, 1979, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
,
12
, pp.
113
125
.
20.
Colantuoni
,
G.
,
Hellums
,
J. D.
,
Moake
,
J. L.
, and
Alfrey
,
C. P.
, Jr.
, 1977, “
The Response of Human Platelets to Shear Stress at Short Exposure Times
,”
Trans. Am. Soc. Artif. Intern. Organs
,
23
, pp.
626
630
.
21.
Carter
,
J.
,
Hristova
,
K.
,
Harasaki
,
H.
, and
Smith
,
W. A.
, 2003, “
Short Exposure Time Sensitivity of White Cells to Shear Stress
,”
ASAIO J.
,
49
, pp.
687
691
.
22.
Tsai
,
H.-M.
,
Sussman
,
I. I.
, and
Nagel
,
R. L.
, 1994, “
Shear Stress Enhances the Proteolysis of von Willebrand Factor in Normal Plasma
,”
Blood
,
83
, pp.
2171
2179
.
23.
Vincentelli
,
A.
,
Susen
,
S.
,
Le Tourneau
,
T.
,
Six
,
I.
,
Fabre
,
O.
,
Juthier
,
F.
,
Bauters
,
A.
,
Decoene
,
C.
,
Goudemand
,
J.
,
Prat
,
A.
, and
Jude
,
B.
, 2003, “
Acquired von Willebrand Syndrome in Aortic Stenosis
,”
New Engl. J. Med.
,
349
, pp.
343
349
.
24.
Uriel
,
N.
,
Pak
,
S.-W.
,
Jorde
,
U. P.
,
Jude
,
B.
,
Susen
,
S.
,
Vincentelli
,
A.
,
Ennezat
,
P. V.
,
Cappleman
,
S.
,
Naka
,
Y.
, and
Mancini
,
D.
, 2010, “
Acquired von Willebrand Syndrome After Continuous-Flow Mechanical Device Support Contributes to a High Prevalence of Bleeding During Long-Term Support and at the Time of Transplantation
,”
J. Am. Coll. Cardiol.
,
56
, pp.
1207
1213
.
25.
Di Stasio
,
E.
and
De Cristofaro
,
R.
, 2010, “
The Effect of Shear Stress on Protein Conformation Physical Forces Operating on Biochemical Systems: The Case of von Willebrand Factor
,”
Biophys. Chem.
,
153
, pp.
1
8
.
26.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2011, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
, pp.
263
280
.
27.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Landrot
,
N.
, and
Curtas
,
A.
, 2001, “
Particle Image Velocimetry Measurements of Blood Velocity in a Continuous Flow Ventricular Assist Device
,”
ASAIO J.
,
47
, pp.
406
411
.
28.
Chua
,
L. P.
,
Ong
,
K. S.
,
Yu
,
C. M. S.
, and
Zhou
,
T.
, 2004, “
Leakage Flow Rate and Wall Shear Stress Distributions in a Biocentrifugal Ventricular Assist Device
,”
ASAIO J.
,
50
, pp.
530
536
.
29.
Wu
,
Z. J.
,
Gottlieb
,
R. K.
,
Burgreen
,
G. W.
,
Holmes
,
J. A.
,
Borzelleca
,
D. C.
,
Kameneva
,
M. V.
,
Griffith
,
B. P.
, and
Antaki
,
J. F.
, 2001, “
Investigation of Fluid Dynamics Within a Miniature Mixed Flow Blood Pump
,”
Exp. Fluids
,
31
, pp.
615
629
.
30.
Sukumar
,
R.
,
Ahavale
,
M. M.
,
Makhijani
,
V. B.
, and
Przekwas
,
A. J.
, 1996, “
Application of Computational Fluid Dynamics Techniques to Blood Pumps
,”
Artif. Organs
,
20
, pp.
529
533
.
31.
Antaki
,
J. F.
,
Ghattas
,
O.
,
Burgreen
,
G. W.
,
He
,
B.
, 1995, “
Computational Flow Optimization of Rotary Blood Pump Components
,”
Artif. Organs
,
19
, pp.
608
615
.
32.
Wu
,
Z. J.
,
Taskin
,
M. E.
,
Zhang
,
T.
,
Fraser
,
K. H.
, and
Griffith
,
B. P.
, 2012, “
Computational Model-Based Design of a Wearable Artificial Pump-Lung for Cardiopulmonary/Respiratory Support
,”
Artif. Organs
,
36
, pp.
387
399
.
33.
Frank
,
A. O.
,
Walsh
,
P. W.
, and
Moore
,
J. E.
, Jr.
, 2002, “
Computational Fluid Dynamics and Stent Design
,”
Artif. Organs
,
26
, pp.
614
621
.
34.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2010, “
Computational Fluid Dynamics Analysis of Thrombosis Potential in Ventricular Assist Device Drainage Cannulae
,”
ASAIO J.
,
56
, pp.
157
163
.
35.
Kido
,
K.
,
Hoshi
,
H.
,
Watanabe
,
N.
,
Kataoka
,
H.
,
Ohuchi
,
K.
,
Asama
,
J.
,
Shinshi
,
T.
,
Yoshikawa
,
M.
, and
Takatani
,
S.
, 2006, “
Computational Fluid Dynamics Analysis of the Pediatric Tiny Centrifugal Blood Pump (TinyPump)
,”
Artif. Organs
,
30
, pp.
392
399
.
36.
Legendre
,
D.
,
Antunes
,
P.
,
Bock
,
E.
,
Andrade
,
A.
,
Biscegli
,
J. F.
, and
Ortiz
,
J. P.
, 2008, “
Computational Fluid Dynamics Investigation of a Centrifugal Blood Pump
,”
Artif. Organs
,
32
, pp.
342
348
.
37.
Untaroiu
,
A.
,
Throckmorton
,
A. L.
,
Patel
,
S. M.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olse
,
D. B.
, 2005, “
Numerical and Experimental Analysis of an Axial Flow Left Ventricular Assist Device: The Influence of the Diffuser on Overall Pump Performance
,”
Artif. Organs
,
29
, pp.
581
591
.
38.
Wu
,
J.
,
Paden
,
B. E.
,
Borovetz
,
H. S.
, and
Antaki
,
J. F.
, 2010, “
Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device
,”
Artif. Organs
,
34
, pp.
402
411
.
39.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fleischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B. P.
, and
Wu
Z. J.
, 2011, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
, pp.
1099
1113
.
40.
Nishida
,
M.
,
Maruyama
,
O.
,
Kosaka
,
R.
,
Yamane
,
T.
,
Kogure
,
H.
,
Kawamura
,
H.
,
Yamamoto
,
Y.
,
Kuwana
,
K.
,
Sankai
,
Y.
, and
Tsutsui
,
T.
, 2009, “
Hemocompatibility Evaluation With Experimental and Computational Fluid Dynamic Analyses for a Monopivot Circulatory Assist Pump
,”
Artif. Organs
,
33
, pp.
378
386
.
41.
Chua
,
L. P.
,
Su
,
B.
,
Tau
,
M. L.
, and
Zhou
,
T.
, 2007, “
Numerical Simulation of an Axial Blood Pump
,”
Artif. Organs
,
31
, pp.
560
570
.
42.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Zhang
,
T.
,
Richardson
,
J. S.
,
Gellman
,
B.
,
Dasse
,
K.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2010, “
Effect of Impeller Position on CFD Calculations of Blood Flow in Magnetically Levitated Centrifugal Blood Pumps
,” Proceedings of the ASME 2010 Summer Bioengineering Conference (SBC2010), Naples, FL.
43.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2006, “
Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatability of the Centrimag Blood Pump
,”
Artif. Organs
,
30
, pp.
168
177
.
44.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
123
160
.
45.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.
46.
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Stewart
,
S. F.
,
Myers
,
M. R.
,
Berman
,
M. R.
,
Burgreen
,
G. W.
,
Paterson
,
E. G.
, and
Malinauskas
,
R. A.
, 2011, “
Multilaboratory Particle Image Velocimetry Analysis of the Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations
,”
ASME J. Biomech. Eng.
,
133
, p.
041002
.
47.
Ansys Inc.: Fluent Theory Guide.
48.
Bludszuweit
,
C.
, 1995, “
Model for a General Mechanical Blood Damage Prediction
,”
Artif. Organs
,
19
, pp.
583
598
.
49.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2012, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis
,”
ASAIO J.
58
pp.
363
372
.
50.
Heuser
,
G.
, and
Opitz
,
R.
, 1980, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
,
17
, pp.
17
24
.
51.
Zhang
,
T.
,
Taskin
,
M. E.
,
Fang
,
H. B.
,
Pampori
,
A.
,
Jarvik
,
R.
,
Griffith
,
B. P.
, and
Wu
Z. J.
, 2011, “
Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood Shearing Devices
,”
Artif. Organs
,
35
, pp.
1180
1186
.
52.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
, 2003, “
Computational Fluid Dynamics Prediction of Blood Damage In a Centrifugal Pump
,”
Artif. Organs
,
27
, pp.
938
941
.
53.
American Society for Testing and Materials, 1998, “
Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps
,” Annual Book of ASTM Standards, West Conshohocken, PA, Vol. 13.01.
54.
See supplementary material at http://medschool.umaryland.edu/artificial_organs/pubs.asp for: additional mesh study results; detailed descriptions of the flow fields and shear stress histograms for each operating condition; images showing the locations of high shear stress regions; histograms for residence time; and comparative sss and time results at optimum VAD conditions.
55.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Correlation of in vivo Clot Deposition With the Flow Characteristics in the 50 cc Penn State Artificial Heart: A Preliminary Study
,”
ASAIO J.
,
50
, pp.
537
542
.
56.
Alemu
,
Y.
and
Bluestein
,
D.
, 2007, “
Flow Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
, pp.
677
688
.
57.
Loffler
,
C.
,
Straub
,
A.
,
Bassler
,
N.
,
Pernice
,
K.
,
Beyersdorf
,
F.
,
Bode
,
C.
,
Siegenthaler
,
M. P.
, and
Peter
,
K.
, 2009, “
Evaluation of Platelet Activation in Patients Supported by the Jarvik 2000 High-Rotational Speed Impeller Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
137
, pp.
736
741
.
58.
Steinlechner
,
B.
,
Dworschak
,
M.
,
Birkenberg
,
B.
,
Duris
,
M.
,
Zeidler
,
P.
,
Fischer
,
H.
,
Milosevic
,
L.
,
Wieselthaler
,
G.
,
Wolner
,
E.
,
Quehenberger
,
P.
, and
Jilma
,
B.
, 2009, “
Platelet Dysfunction in Outpatients With Left Ventricular Assist Devices
,”
Ann. Thorac. Surg.
,
87
, pp.
131
138
.
59.
Schmid
,
C.
,
Tjan
,
T. D. T.
,
Etz
,
C.
,
Schmidt
,
C.
,
Wenzelburger
,
F.
,
Wilhelm
,
M.
,
Rothenburger
,
M.
,
Drees
,
G.
, and
Scheld
,
H. H.
, 2005, “
First Clinical Experience With the Incor Left Ventricular Assist Device
,”
J. Heart Lung Transplant
,
24
, pp.
1188
1194
.
60.
Vidakovic
,
S.
,
Ayre
,
P.
,
Woodard
,
J.
,
Lingard
,
N.
,
Tansley
,
G.
, and
Reizes
,
J.
, 2000, “
Paradoxical Effects of Viscosity on the VentrAssist Rotary Blood Pump
,”
Artif. Organs
,
24
, pp.
478
482
.
61.
Fahraeus
,
R.
and
Lindqvist
,
T.
, 1931, “
The Viscosity of the Blood in Narrow Capillary Tubes
,”
Am. J. Physiol.
,
96
, pp.
562
568
. Available at: http://ajplegacy.physiology.org/content/96/3/562
62.
Antaki
,
J. F.
,
Diao
,
C.-G.
,
Shu
,
F.-J.
,
Wu
,
J.-C.
,
Zhao
,
R.
, and
Kameneva
,
M. V.
, 2008, “
Microhaemodynamics Within the Blade Tip Clearance of a Centrifugal Turbodynamic Blood Pump
,”
Proc. Inst. Mech. Eng.
, Part H: J. Eng. Med.,
222
, pp.
573
581
.
63.
Shu
,
F.
,
Vandenberghe
,
S.
, and
Antaki
,
J. F.
, 2009, “
The Importance of dQ/dt on the Flow Field in a Turbodynamic Pump With Pulsatile Flow
,”
Artif. Organs
,
33
, pp.
757
762
.
64.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
, 2004, “
Transient and Quasi-Steady Computational Fluid Dynamics Study of a Left Ventricular Assist Device
,”
ASAIO J.
,
50
, pp.
410
417
.
You do not currently have access to this content.