Elastin is essential to accommodate physiological deformation and provide elastic support for blood vessels. As a long-lived extracellular matrix protein, elastin can suffer from cumulative effects of exposure to chemical damage, which greatly compromises the mechanical function of elastin. The mechanical properties of elastin are closely related to its microstructure and the external chemical environments. The purpose of this study is to investigate the changes in the macroscopic elastic and viscoelastic properties of isolated porcine aortic elastin under the effects of nonenzymatic mediated in vitro elastin–lipid interactions and glycation. Sodium dodecyl sulfate (SDS) was used for elastin–lipid interaction, while glucose was used for glycation of elastin. Elastin samples were incubated in SDS (20 mM) or glucose (2 M) solutions and were allowed to equilibrate for 48 h at room temperature. Control experiments were performed in 1  ×  Phosphate buffered saline (PBS). Biaxial tensile and stress relaxation experiments were performed to study the mechanical behavior of elastin with solute effects. Experimental results reveal that both the elastic and viscoelastic behaviors of elastin change in different biochemical solvents environments. The tangent stiffness of SDS treated elastin decreases to 63.57 ± 4.7% of the control condition in circumference and to 58.43 ± 2.65% in the longitude. Glucose treated elastin exhibits an increase in stiffness to 145.06 ± 1.48% of the control condition in the longitude but remains similar mechanical response in the circumferential direction. During stress relaxation experiments with a holding period of half an hour, elastin treated with SDS or glucose shows more prominent stress relaxation than the untreated ones.

References

References
1.
Daamen
,
W. F.
,
Veerkamp
,
J. H.
,
van Hest
,
J. C. M.
, and
van Kuppevelt
,
T. H
, 2007, “
Elastin as a Biomaterial for Tissue Engineering
,”
Biomaterials
28
, pp.
4378
4398
.
2.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 2002, “
Effects of Lipids on Elastin’s Viscoelastic Properties
,”
Biopolymers
,
64
(
2002a
), pp.
127
138
.
3.
McGrath
,
L.T.
, and
Elliott
,
R. J.
, 1991, “
Formation of a Lipid Gradient Across the Human Aortic Wall During Ageing and the Development of Atherosclerosis
,”
Atherosclerosis
,
87
, pp.
211
220
.
4.
Tarnawski
,
R.
,
Tarnawski
,
R.
, and
Grobelny
,
J.
, 1995, “
Changes in Elastin in Human Atherosclerotic Aorta: Carbon-13 Magic Angle Sample-Spinning NMR Studies
,”
Atherosclerosis
,
115
, pp.
27
33
.
5.
Vlassara
,
H.
,
Brownlee
,
M.
, and
Cerami
,
A.
, 1986, “
Nonenzymatic glycosylation: Role in the Pathogenesis of Diabetic Complications
,”
Clin. Chem.
,
32
, pp.
B37
B41
.
6.
Vishwanath
,
V.
,
Frank
,
K. E.
,
Elmmets
,
C. A.
,
Dauchot
,
P. J.
, and
Monnier
,
V. M.
, 1986, “
Glycation of Skin Collagen in Type 1 Diabetes Mellitus. Correlation With Long-Term Complications
,”
Diabetes
,
35
, pp.
916
921
.
7.
Winlove
,
C. P.
, and
Parker
,
K. H.
, 1990a,
Connective Tissue Matrix II
,
Hukins
,
D. W. L.
, ed.,
MacMillan
,
London, Chap
.
7
.
8.
Weinberg
,
P. D.
,
Winlove
,
C. P.
, and
Parker
,
K. H.
, 1995, “
The Distribution of Water in Arterial Elastin: Effects of Mechanical Stress, Osmotic Pressure, and Temperature
,”
Biopolymers
,
35
pp.
161
169
.
9.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 1996, “
Swelling and Viscoelastic Properties of Osmotically Stressed Elastin
,”
Biopolymers
,
39
, pp.
641
693
.
10.
Kawazoye
,
S.
,
Tian
,
S. F.
,
Toda
,
S.
,
Takashima
,
T.
,
Sunaga
,
T.
,
Fujitani
,
N.
,
Higashino
,
H.
, and
Matsumura
,
S.
, 1995, “
The Mechanism of Interaction of Sodium Dodecyl Sulfate With Elastic Fibers
, 117, pp.
1254
1260
.
11.
Gunstone
,
F. D.
,
Harwook
,
J. L.
, and
Padley
,
F. B.
, 1986, “
The Lipid Handbook
,
Chapman & Hall
,
New York
, pp.
382
384
.
12.
Bush
,
K.
,
McGarvey
,
K. A.
,
Gosline
,
J. M.
, and
Aaron
B. B.
, 1982, “
Solute Effects on the Mechanical Properties of Arterial Elastin
,”
Connective Tissue Res.
,
9
, pp.
157
163
.
13.
Winlove
,
C. P.
, and
Parker
,
K. H.
, 1990b, “
Influence of Solvent Composition on the Mechanical Properties of Arterial Elastin
,”
Biopolymers
,
29
, pp.
729
735
.
14.
Konova
,
E.
,
Baydanoff
,
S.
,
Atanasova
,
M.
, and
Velkova
,
A.
, 2004, “
Age-Related Changes in the Glycation of Human Aortic Elastin
,”
Exp. Gerontol.
,
39
. pp.
249
254
.
15.
Zou
,
Y.
, and
Zhang
,
Y.
, 2009, “
An Experimental and Theoretical Study on the Anisotropy of Elastin Network
,”
Ann. Biomed. Eng.
,
37
, pp.
1572
1583
.
16.
Zou
,
Y.
, and
Zhang
Y.
, 2011, “
The Orthotropic Viscoelastic Behavior of Aortic Elastin
,
Biomech. Model. Mechanobiol.
,
10
, pp.
613
625
.
17.
Lu
,
Q.
,
Ganesan
,
K.
,
Simionescu
,
D. T.
, and
Vyavahare
,
N. R.
, 2004, “
Novel Porous Aortic Elastin and Collagen Scaffolds for Tissue Engineering
,”
Biomaterials
,
25
, pp.
5227
5237
.
18.
Gundiah
,
N.
,
Ratcliffe
,
M. B.
, and
Pruitt
L. A.
, 2007, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
,
40
, pp.
586
594
.
19.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 2007a, “
Limits to the Durability of Arterial Elastic Tissue
,”
Biomaterials
,
28
, pp.
2021
2031
.
20.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 2007b, “
Mechanical Properties of Elastin Along the Thoracic Aorta in the Pig
,”
J. Biomech.
,
40
, pp.
2214
2221
.
21.
Watton
,
P. N.
,
Ventikos
,
Y.
, and
Holzapfel
,
G. A.
, 2009, “
Modeling the Mechanical Response of Elastin for Arterial Tissue
,”
J. Biomech.
,
42
, pp.
1320
1325
.
22.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 2002c, “
Unusual Swelling of Elastin
,”
Biopolymers
,
64
, pp.
115
126
.
23.
Mukherjee
,
D. P.
,
Kagan
,
H. M.
,
Jordan
,
R. E.
, and
Franzblau
,
C.
, 1976, “
Effect of Hydrophobic Elastin Ligands on the Stress-Strain Properties of Elastin Fibers
,”
Connect. Tissue Res.
,
4
, pp.
177
179
.
24.
Reddy
G.
K., 2003, “
Glucose-Mediated in vitro Glycation Modulates Biomechanical Integrity of the Soft Tissues by Not Hard Tissues
,”
J. Ortho. Res.
,
21
, pp.
738
743
.
25.
Winlove
,
C. P.
,
Parker
,
K. H.
,
Avery
,
N. C.
, and
Bailey
,
A. J.
, 1996, “
Interactions of Elastin and Aorta With Sugars in vitro and Their Effects on Biochemical and Physical Properties
,”
Diabetologia
,
39
, pp.
1131
1139
.
26.
Arribas
,
S. M.
,
Hinek
,
A.
,
Gonzalez
,
M. C.
, 2006, “
Elastic Fibres and Vascular Structure in Hypertension
,
Pharmacol. Therapeut.
111
, pp.
771
791
.
27.
Clark
,
J. M.
, and
Glagov
,
S.
, 1985, “
Transmural Organization of the Arterial Media. The Lamellar Unit Revisited
,”
Arterioscler. Thromb. Vasc. Biol.
,
5
, pp.
19
34
.
28.
Aylward
,
G.
, and
Findlay
,
T.
, 1999,
SI Chemical Data
,
4th ed.
,
John Wiley & Sons
,
New York
.
29.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 1993, “
The Effects of Polar Solutes on the Viscoelastic Behavior of Elastin
,”
Biorheology
,
30
, pp.
229
242
.
You do not currently have access to this content.