Accurate characterization of carotid artery geometry is vital to our understanding of the pathogenesis of atherosclerosis. Three-dimensional computer reconstructions based on medical imaging are now ubiquitous; however, mean carotid artery geometry has not yet been comprehensively characterized. The goal of this work was to build and study such geometry based on data from 16 male patients with severe carotid artery disease. Results of computerized tomography angiography were used to analyze the cross-sectional images implementing a semiautomated segmentation algorithm. Extracted data were used to reconstruct the mean three-dimensional geometry and to determine average values and variability of bifurcation and planarity angles, diameters and cross-sectional areas. Contrary to simplified carotid geometry typically depicted and used, our mean artery was tortuous exhibiting nonplanarity and complex curvature and torsion variations. The bifurcation angle was 36 deg ± 11 deg if measured using arterial centerlines and 15 deg ± 14 deg if measured between the walls of the carotid bifurcation branches. The average planarity angle was 11 deg ± 10 deg. Both bifurcation and planarity angles were substantially smaller than values reported in most studies. Cross sections were elliptical, with an average ratio of semimajor to semiminor axes of 1.2. The cross-sectional area increased twofold in the bulb compared to the proximal common, but then decreased 1.5-fold for the combined area of distal internal and external carotid artery. Inter-patient variability was substantial, especially in the bulb region; however, some common geometrical features were observed in most patients. Obtained quantitative data on the mean carotid artery geometry and its variability among patients with severe carotid artery disease can be used by biomedical engineers and biomechanics vascular modelers in their studies of carotid pathophysiology, and by endovascular device and materials manufacturers interested in the mean geometrical features of the artery to target the broad patient population.

References

References
1.
Friedman
,
M. H.
,
Deters
,
O. J.
,
Mark
,
F. F.
,
Bargeron
,
C. B.
, and
Hutchins
,
G. M.
, 1983, “
Arterial Geometry Affects Hemodynamics. A Potential Risk Factor for Athersoclerosis
,”
Atherosclerosis
,
46
(
2
), pp.
225
231
.
2.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
3.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
, 2007, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.
4.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamics Shear Stress and its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.
5.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
.
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherosclerosis: Investigation of Inter-Individual Variation
,”
Biomech. Model Mechanobiol.
,
3
, pp.
17
32
.
6.
Forster
,
F. K.
,
Chikos
,
P. M.
, and
Frazier
,
J. S.
, 1985, “
Geometric Modeling of the Carotid Bifurcation in Humans: Implications in Ultrasonic Doppler and Radiologic Investigations
,”
J. Clin. Ultrasound
,
13
(
6
), pp.
385
390
.
7.
Fisher
,
M.
, and
Fieman
,
S.
, 1990, “
Geometric Factors of the Bifurcation in Carotid Atherogenesis
,”
Stroke
,
21
(
2
), pp.
267
271
.
8.
Goubergrits
,
L.
,
Affeld
,
K.
,
Fernandez-Britto
,
J.
, and
Falcon
,
L.
, 2002, “
Geometry of the Human Common Carotid Artery. A Vessel Cast Study of 86 Specimens
,”
Pathol. Res. Pract.
,
198
(
8
), pp.
543
551
.
9.
Syo
,
D. D.
,
Franjic
,
B. D.
,
Lovricevic
,
I.
,
Vukelic
,
M.
, and
Palenkic
,
H.
, 2005, “
Carotid Bifurcation Position and Branching Angle in Patients With Atherosclerotic Carotid Disease
,”
Coll. Antropol.
,
29
(
2
), pp.
627
632
.
10.
Thomas
,
J. B.
,
Jong
,
L.
,
Spence
,
J. D.
,
Wasserman
,
B. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2005, “
Anthropometric Data for Magnetic Resonance Imaging of the Carotid Bifurcation
,”
J. Magn. Reson. Imaging
,
21
, pp.
845
849
.
11.
O’Flynn
,
P. M.
,
O’Sullivan
,
G.
, and
Pandit
,
A. S.
, 2007, “
Methods for Three-Dimensional Geometric Characterization of the Arterial Vasculature
,”
Ann. Biomed. Eng.
,
35
(
8
), pp.
1368
1381
.
12.
Thomas
,
J. B.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Antiga
,
L.
,
Rutt
,
B. K.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2003, “
Geometric Characterization of the Normal and Mildly Diseased Human Carotid Bifurcation
,”
Summer Bioengineering Conference
,
Sonesta Beach Resort in Key Biscayne
,
Florida
.
13.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Steinman
,
D. A. H.
,
Spence
,
J. D.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
,
36
(
11
), pp.
2450
2456
.
14.
Lee
,
S.-W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts its Exposure to Disturbed Flow
,”
Stroke
,
39
(
8
), pp.
2341
2347
.
15.
Kamenskiy
,
A. V.
,
Pipinos
,
I. I.
,
Desyatova
,
A. S.
,
Salkovskiy
,
Y. E.
,
Yu
,
Kossovich
,
L.
,
Kirillova
,
I. V.
,
Bockeria
,
L. A.
,
Morozov
,
K. M.
,
Polyaev
,
V. O.
,
Lynch
,
T. G.
, and
Dzenis
,
Y. A.
, 2009, “
Finite Element Model of the Patched Human Carotid
,”
Eur. J. Vasc. Endovasc. Surg.
,
43
, pp.
533
541
.
16.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 1998, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
,
28
(
1
), pp.
143
156
.
17.
Taylor
,
C. A.
, and
Humphrey
,
J. D.
, 2009, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3514
3523
.
18.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
MacTaggart
,
J. N.
,
Desyatova
,
A. S.
, and
Pipinos
,
I. I.
, 2011, “
In Vivo Three-Dimensional Blood Velocity Profile Shapes In The Human Common, Internal, and External Carotid Arteries
,”
J. Vasc. Surg.
,
54
(
4
), pp.
1011
1020
.
19.
Selzer
,
R. H.
,
Hodis
,
H. N.
, Kwong-
Fu
,
H.
,
Mack
,
W. J.
,
Lee
,
P. L.
,
Liu
,
C. R.
, and
Liu
,
C. H.
, 1994, “
Evaluation of Computerized Edge Tracking For Quantifying Intima-Media Thickness of the Common Carotid Artery From B-Mode Ultrasound Images
,”
Atherosclerosis
,
111
(
1
), pp.
1
11
.
20.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer-Simulation of Local Blood-Flow and Vessel Mechanics in a Compliant Carotid-Artery Bifurcation Model
,”
J. Biomech.
,
28
, pp.
845
856
.
21.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
, Jr.,
J. E.
, and
Meister
,
J.-J.
, 1997, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
22.
Maurits
,
N. M.
,
Loots
,
G. E.
, and
Veldman
,
A. E. P.
, 2007, “
The Influence of Vessel Wall Elasticity and Peripheral Resistance on the Carotid Artery Flow Wave Form: A CFD Model Compared to In Vivo Ultrasound Measurements
,”
J. Biomech.
,
40
, pp.
427
436
.
23.
Chen
,
S. Y.
,
Carroll
,
J. J. D.
, and
Messenger
,
J. C.
, 2002, “
Quantitative Analysis of Reconstructed 3-D Coronary Arterial Tree and Intracoronary Devices
,”
IEEE Trans. Med. Imaging
,
21
(
7
), pp.
724
740
.
24.
Liao
,
R.
,
Chen
,
S -Y.
,
Messenger
,
J. M.
,
Groves
,
B.
,
Burchenal
,
J.
, and
Carroll
,
J. D.
, 2002, “
Four-Dimensional Analysis of Cyclic Changes in Coronary Artery Shape
,”
Cathet. Cardiovasc Interv.
,
55
(
3
), pp.
344
354
.
25.
Puentes
,
J.
,
Roux
,
C.
,
Garreau
,
M.
, and
Coatrieux
,
J. L.
, 1998, “
Dynamic Feature Extraction of Coronary Artery Motion Using DSA Image Sequences
,”
IEEE Trans. Med. Imaging
,
17
(
6
), pp.
857
871
.
26.
Pressley
,
A.
, 2010,
Elementary Differential Geometry
,
Springer
,
London
, p.
395
.
27.
Choi
,
G.
,
Cheng
,
C. P.
,
Wilson
,
N. M.
, and
Taylor
,
C. A.
, 2009, “
Methods for Quantifying Three-Dimensional Deformation of Arteries Due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
14
33
.
28.
Thomas
,
J. B.
,
Milner
,
J. S.
, and
Steinman
,
D. A.
, 2002, “
On the Influence of Vessel Planarity on Local Hemodynamics at the Human Carotid Bifurcation
,”
Biorheology
,
39
(
3–4
), pp.
443
448
.
29.
Caro
,
C. G.
,
Doorly
,
D. J.
,
Tarnawski
,
M.
,
Scott
,
K. T.
,
Long
,
Q.
, and
Dumoulin
,
C. L.
, 1996, “
Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow
,”
Proc. R. Soc. London, Ser. A
,
452
(
1944
), pp.
185
197
.
30.
Berger
,
S. A.
, and
Jou
,
L. D.
, 2000, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
347
384
.
31.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
, “
Steady Flow in a Model of the Human Carotid Bifurcation. Part I and II
,”
J. Biomech.
,
15
, pp.
349
378
.
32.
Smith
,
R. F.
,
Rutt
,
B. K.
,
Fox
,
A. J.
,
Rankin
,
R. N.
, and
Holdsworth
,
D. W.
, 1996, “
Geometric Characterization of Stenosed Human Carotid Arteries
,”
Acad. Radiol.
,
3
, pp.
898
911
.
You do not currently have access to this content.