The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material.

References

References
1.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
,
124
, p.
244
.
2.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
, pp.
23
30
.
3.
Hoffmeister
,
B. K.
,
Handley
,
S. M.
,
Wickline
,
S. A.
, and
Miller
,
J. G.
, 1996, “
Ultrasonic Determination of the Anisotropy of Young’s Modulus of Fixed Tendon and Fixed Myocardium
,”
J. Acoust. Soc. Am.
,
100
, pp.
3933
3940
.
4.
Sinkus
,
R.
,
Tanter
,
M.
,
Catheline
,
S.
,
Lorenzen
,
J.
,
Kuhl
,
C.
,
Sondermann
,
E.
, and
Fink
,
M.
, 2005, “
Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance-Elastography
,”
Magn. Reson. Med.
,
53
, pp.
372
387
.
5.
Wang
,
C.
, 2003, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
,
36
, pp.
339
353
.
6.
Basser
,
P. J.
, and
Pierpaoli
,
C.
, 1996, “
Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI
,”
J. Magn. Reson., Ser. B
,
111
, pp.
209
219
.
7.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
8.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
, pp.
1221
1233
.
9.
Xia
,
Y.
, and
Elder
,
K.
, 2001, “
Quantification of the Graphical Details of Collagen Fibrils in Transmission Electron Micrographs
,”
J. Microsc.
,
204
, pp.
3
16
.
10.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, 2009, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids
,”
Math. Mech. Solids
,
14
, pp.
474
489
.
11.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
,
35
, pp.
483
490
.
12.
Velardi
,
F.
,
Fraternali
,
F.
, and
Angelillo
,
M.
, 2006, “
Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
,”
Biomech. Model. Mechanobiol.
,
5
, pp.
53
61
.
13.
Le Bihan
,
D.
,
Breton
,
E.
,
Lallemand
,
D.
,
Grenier
,
P.
,
Cabanis
,
E.
, and
Laval-Jeantet
,
M.
, 1986, “
MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders
,”
Radiology
,
161
, pp.
401
407
, Available at: http://radiology.rsna.org/content/161/2/401.longhttp://radiology.rsna.org/content/161/2/401.long.
14.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2004, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
, pp.
226
236
.
15.
Karduna
,
A. R.
,
Halperin
,
H. R.
, and
Yin
,
F. C.
, 1997, “
Experimental and Numerical Analyses of Indentation in Finite-Sized Isotropic and Anisotropic Rubber-Like Materials
,”
Ann. Biomed. Eng.
,
25
, pp.
1009
1016
.
16.
Meaney
,
D. F.
, 2003, “
Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter
,”
Biomech. Model. Mechanobiol.
,
1
, pp.
279
293
.
17.
Ning
,
X.
,
Zhu
,
Q.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
, 2006, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
,
128
, pp.
925
933
.
18.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
19.
Bischoff
,
J. E.
, 2004, “
Static Indentation of Anisotropic Biomaterials Using Axially Asymmetric Indenters—A Computational Study
,”
ASME J. Biomech. Eng.
,
126
, pp.
498
505
.
20.
Elkin
,
B. S.
,
Azeloglu
,
E. U.
,
Costa
,
K. D.
, and
Morrison
,
B.
, 2007, “
Mechanical Heterogeneity of the Rat Hippocampus Measured by Atomic Force Microscope Indentation
,”
J. Neurotrauma
,
24
, pp.
812
822
.
21.
Hrapko
,
M.
,
Van Dommelen
,
J. a. W.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H. M.
, 2008, “
Characterisation of the Mechanical Behaviour of Brain Tissue in Compression and Shear
,”
Biorheology
,
45
, pp.
663
676
.
22.
Cheng
,
S.
, and
Bilston
,
L. E.
, 2007, “
Unconfined Compression of White Matter
,”
J. Biomech.
,
40
, pp.
117
124
.
23.
Van Dommelen
,
J. A.
,
Van Der Sande
,
T. P.
,
Hrapko
,
M.
, and
Peters
,
G. W.
, 2010, “
Mechanical Properties of Brain Tissue by Indentation: Interregional Variation
,”
J. Mech. Behav. Biomed. Mater.
,
3
, pp.
158
166
.
24.
Cox
,
M. a. J.
,
Driessen
,
N. J. B.
,
Boerboom
,
R. A.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2008, “
Mechanical Characterization of Anisotropic Planar Biological Soft Tissues Using Finite Indentation: Experimental Feasibility
,”
J. Biomech.
,
41
, pp.
422
429
.
25.
Torbet
,
J.
,
Freyssinet
,
J. M.
, and
Hudry-Clergeon
,
G.
, 1981, “
Oriented Fibrin Gels Formed by Polymerization in Strong Magnetic Fields
,”
Nature (London)
,
289
, pp.
91
93
.
26.
Yamagishi
,
A.
,
Takeuchi
,
T.
,
Higashi
,
T.
, and
Date
,
M.
, 1990, “
Magnetic Field Effect on the Polymerization of Fibrin Fibers
,”
Physica B
,
164
, pp.
222
228
.
27.
Namani
,
R.
,
Wood
,
M. D.
,
Sakiyama-Elbert
,
S. E.
, and
Bayly
,
P. V.
, 2009, “
Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography
,”
J. Biomech.
,
42
, pp.
2047
2053
.
28.
Spencer
,
A.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer-Verlag
,
New York
.
29.
Yang
,
F. Q.
, and
Cheng
,
Y. T.
, 2009, “
Revisit of the Two-Dimensional Indentation Deformation of an Elastic Half-Space
,”
J. Mater. Res.
,
24
, pp.
1976
1982
.
30.
Okamoto
,
R. J.
,
Clayton
,
E. H.
, and
Bayly
,
P. V.
, 2011, “
Viscoelastic Properties of Soft Gels: Comparison of Magnetic Resonance Elastography and Dynamic Shear Testing in the Shear Wave Regime
,”
Phys. Med. Biol.
,
56
, pp.
6379
6400
.
31.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2001, “
Biomechanics of Neurotrauma
,”
Neurol. Res.
,
23
, pp.
144
156
.
32.
Bower
,
A. F.
, 2010,
Applied Mechanics of Solids
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.