The complex structural organization of the aortic valve (AV) extracellular matrix (ECM) enables large and highly nonlinear tissue level deformations. The collagen and elastin (elastic) fibers within the ECM form an interconnected fibrous network (FN) and are known to be the main load-bearing elements of the AV matrix. The role of the FN in enabling deformation has been investigated and documented. However, there is little data on the correlation between tissue level and FN-level strains. Investigating this correlation will help establish the mode of strain transfer (affine or nonaffine) through the AV tissue as a key feature in microstructural modeling and will also help characterize the local FN deformation across the AV sample in response to applied tissue level strains. In this study, the correlation between applied strains at tissue level, macrostrains across the tissue surface, and local FN strains were investigated. Results showed that the FN strain distribution across AV samples was inhomogeneous and nonuniform, as well as anisotropic. There was no direct transfer of the deformation applied at tissue level to the fibrous network. Loading modes induced in the FN are different than those applied at the tissue as a result of different local strains in the valve layers. This nonuniformity of local strains induced internal shearing within the FN of the AV, possibly exposing the aortic valve interstitial cells (AVICs) to shear strains and stresses.

References

References
1.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp-Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
, pp.
23
30
.
2.
Stella
,
J. A.
, and
Sacks
,
M. S.
, 2007, “
On the Biaxial Mechanical Properties of the Layers of the Aortic Valve Leaflet
,”
ASME J. Biomech. Eng.
,
129
, pp.
757
766
.
3.
Schoen
,
F. J.
, and
Levy
,
R. J.
, 1999, “
Tissue Heart Valves: Current Challenges and Future Research Perspectives
,”
J. Biomed. Mater. Res.
,
47
, pp.
439
465
.
4.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
D. E.
, 2009, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
, pp.
1804
1824
.
5.
Scott
,
M.
, and
Vesely
,
I.
, 1995, “
Aortic Valve Cusp Microstructure: The Role of Elastin
,”
Ann. Thorac. Surg.
,
60
, pp.
S391
S394
.
6.
Vesely
,
I.
, 1998, “
The Role of Elastin in Aortic Valve Mechanics
,”
J. Biomech.
,
31
, pp.
115
123
.
7.
Chong
,
M.
, and
Missirlis
,
Y. F.
, 1978, “
Aortic Valve Mechanics Part II: A Stress Analysis of the Porcine Aortic Valve Leaflets in Diastole
,”
Biomater. Med. Devices Artif. Organs
,
6
, pp.
225
244
.
8.
Thubrikar
,
M.
,
Piepgrass
,
W. C.
,
Deck
,
J. D.
, and
Nolan
,
S. P.
, 1980, “
Stress of Natural Versus Prosthetic Aortic Valve Leaflets In Vivo
,”
Ann. Thorac. Surg.
,
30
, pp.
230
239
.
9.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
, 2000, “
A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Value
,”
J. Biomech.
,
33
, pp.
1079
1088
.
10.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
36
, pp.
103
112
.
11.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II-A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
, pp.
327
335
.
12.
Vesely
,
I.
, and
Nosesorthy
,
R.
, 1992, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
,
25
, pp.
101
113
.
13.
Stella
,
J. A.
,
Liao
,
J.
,
Hong
,
Y.
,
Merryman
,
W. D.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2008, “
Tissue-to-Cellular Level Deformation Coupling in Cell Micro-Integrated Elastomeric Scaffolds
,”
Biomaterials
,
29
, pp.
3228
3236
.
14.
Merryman
,
W. D.
,
Youn
,
I.
,
Lukoff
,
H. D.
,
Krueger
,
P. M.
,
Guilak
,
F.
,
Hopkins
,
R. A.
, and
Sacks
,
M. S.
, 2006, “
Correlation Between Heart Valve Interstitial Cell Stiffness and Transvalvular Pressure: Implications for Collagen Biosynthesis
,”
Am. J. Physiol. Heart Circ. Physiol.
,
290
, pp.
H224
H231
.
15.
Shadow Huang
,
H -Y.
,
Liao
,
J.
, and
Sacks
,
M. S.
, 2007, “
In-Situ Deformation of the Aortic Valve Interstitial Cell Nucleus Under Diastolic Loading
,”
ASME J. Biomech. Eng.
,
129
, pp.
880
889
.
16.
Bax
,
D. V.
,
Rodgers
,
U. R.
,
Bilek
,
M. M. M.
, and
Weiss
,
A. S.
, 2009, “
Cell Adhesion to Tropoelastin Is Mediated Via the C-Terminal GRKRK Motif and Integrin αVβ3
,”
J. Biolog. Chem.
,
284
, pp.
28616
28623
.
17.
Kershaw
,
J. D. B.
,
Misfeld
,
M.
,
Sievers
,
H -H.
,
Yacoub
,
M. H.
, and
Chester
,
A. H.
, 2004, “
Specific Regional and Directional Contractile Responses of Aortic Cusp Tissue
,”
J. Heart Valve Dis.
,
13
, pp.
798
803
.
18.
Merryman
,
W. D.
,
Liao
,
J.
,
Parekh
,
A.
,
Candiello
,
J. E.
,
Lin
,
H.
, and
Sacks
,
M. S.
, 2007, “
Differences in Tissue-Remodeling Potential of Aortic and Pulmonary Heart Valve Interstitial Cells
,”
Tissue Eng.
,
13
, pp.
2281
2289
.
19.
Chester
,
A. H.
, and
Taylor
,
P. M.
, 2007, “
Molecular and Functional Characteristics of Heart-Valve Interstitial Cells
,”
Philos. Trans. R. Soc. London, Ser. B
,
362
, pp.
1437
1443
.
20.
Rabkin-Aikawa
,
E.
,
Farber
,
M.
,
Aikawa
,
M.
, and
Schoen
,
F. J.
, 2004, “
Dynamic and Reversible Changes of Interstitial Cell Phenotype During Remodeling of Cardiac Valves
,”
J. Heart Valve Dis.
,
13
, pp.
841
847
.
21.
Liu
,
A. C.
,
Joag
,
V. R.
, and
Gotlieb
,
A. I.
, 2007, “
Review: The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology
,”
Am. J. Pathol.
,
171
, pp.
1407
1418
.
22.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
, pp.
280
287
.
23.
Ku
,
C -H.
,
Johnson
,
P. H.
,
Batten
,
P.
,
Sarathchandra
,
P.
,
Chambers
,
R. C.
,
Taylor
,
P. M.
,
Yacoub
,
M. H.
, and
Chester
,
A. H.
, 2006, “
Collagen Synthesis by Mesenchymal Stem Cells and Aortic Valve Interstitial Cells in Response to Mechanical Stretch
,”
Cardiovasc. Res.
,
71
, pp.
548
556
.
24.
Talman
,
E. A.
, and
Boughner
,
D. R.
, 1996, “
Internal Shear Properties of Fresh Porcine Aortic Valve Cusps: Implications for Normal Valve Function
,”
J. Heart Valve Dis.
,
5
, pp.
152
159
.
25.
Screen
,
H. R. C.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
, 2003, “
Development of a Technique to Determine Strains in Tendons Using the Cell Nuclei
,”
Biorheology
,
40
, pp.
361
368
.
26.
Screen
,
H. R. C.
,
Bader
,
D. L.
,
Lee
,
D. A.
, and
Shelton
,
J. C.
, 2004, “
Local Strain Measurements Within Tendons
,”
Strain
,
40
, pp.
157
163
.
27.
Lewinsohn
,
A. D.
,
Anssari-Benham
,
A.
,
Lee
,
D. A.
,
Taylor
,
P. M.
,
Chester
,
A. H.
,
Yacoub
,
M. H.
, and
Screen
,
H. R. C.
, 2011, “
Anisotropic Strain Transfer Through the Aortic Valve and Its Relevance to the Cellular Mechanical Environment
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
, pp.
821
830
.
28.
Anssari-Benam
,
A.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
, 2011, “
A Combined Experimental and Modelling Approach to Aortic Valve Viscoelasticity in Tensile Deformation
,”
J. Mater. Sci.: Mater. Med.
,
22
, pp.
253
262
.
29.
Anssari-Benam
,
A.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
, 2011, “
Anisotropic Time-Dependent Behaviour of the Aortic Valve
,”
J. Mech. Behav. Biomed. Mater.
,
4
, pp.
1603
1610
.
30.
Bader
,
D. L.
, and
Knight
,
M. M.
, 2008, “
Biomechanical Analysis of Structural Deformation in Living Cells
,”
Med. Biol. Eng. Comput.
,
46
, pp.
951
963
.
31.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
, p.
132
.
32.
Toupin
,
R. A.
, 1965, “
Saint-Venant’s principle
,”
Arch. Ration. Mech. Anal.
,
18
, pp.
83
96
.
33.
Arridge
,
R. G. C.
, and
Folkes
,
M. J.
, 1976, “
Effect of Sample Geometry on the Measurement of Mechanical Properties of Anisotropic Materials
,”
Polymer
,
17
, pp.
495
500
.
34.
Knowles
,
J. K.
, 1966, “
On Saint-Venant’s Principle in the Two-Dimensional Linear Theory of Elasticity
,”
Arch. Ration. Mech. Anal.
,
21
, pp.
1
22
.
35.
Horgan
,
C. O.
, 1972, “
On Saint-Venant’s Principle in Plane Anisotropic Elasticity
,”
J. Elast.
,
2
, pp.
169
180
.
36.
Cross
,
M. M.
, 1979, “
Relation Between Viscoelasticity and Shear-Thinning Behaviour
,”
Rheol. Acta
,
18
, pp.
609
624
.
37.
Waldman
,
S. D.
, and
Lee
,
J. M.
, 2002, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissue. Part 1: Dynamic Behaviour
,”
J. Mater. Sci.: Mater. Med.
,
13
, pp.
933
938
.
38.
Waldman
,
S. D.
,
Sacks
,
M. S.
, and
Lee
,
J. M.
, 2002, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissue. Part II: Fiber Orientation
,”
J. Mater. Sci. Lett.
,
21
, pp.
1215
1221
.
39.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
, pp.
709
715
.
40.
Jimenez
,
M. L.
,
Brown
,
T. D.
, and
Brand
,
R. A.
, 1989, “
The Effects of Grip Proximity on Perceived Local in vitro Tendon Strain
,”
J. Biomech.
,
22
, pp.
949
955
.
41.
Waldman
,
S. D.
, and
Lee
,
J. M.
, 2005, “
Effect of Sample Geometry on the Apparent Biaxial Mechanical Behaviour of Planar Connective Tissues
,”
Biomaterials
,
26
, pp.
7504
7513
.
42.
Boerboom
,
R. A.
,
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
, 2003, “
Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve
,”
Ann. Biomed. Eng.
,
31
, pp.
1040
1053
.
43.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
,
127
, pp.
329
336
.
44.
Balguid
,
A.
,
Driessen
,
N. J. B.
,
Mol
,
A.
,
Schmitz
,
J. P. J.
,
Verheyen
,
F.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2008, “
Stress Related Collagen Ultrastructure in Human Aortic Valves-Implications for Tissue Engineering
,”
J. Biomech.
,
41
, pp.
2612
2617
.
45.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
,
Cox
,
M. A. J.
, and
Baaijens
,
F. P. T.
, 2008, “
Remodelling of the Angular Collagen Fiber Distribution in Cardiovascular Tissues
,”
Biomech. Model Mechanobiol.
,
7
, pp.
93
103
.
46.
Carew
,
E. O.
,
Talman
,
E. A.
,
Boughner
,
D. R.
, and
Vesely
,
I.
, 1999, “
Quasi-Linear Viscoelastic Theory Applied to Internal Shearing of Porcine Aortic Valve Leaflets
,”
ASME J. Biomech. Eng.
,
121
, pp.
386
392
.
47.
Mase
,
G. T.
, and
Mase
,
G. E.
, 2000,
Continuum Mechanics for Engineers
,
2nd ed.
,
CPC
,
Florida
.
48.
Anssari-Benam
,
A.
,
Viola
,
G.
, and
Korakianitis
,
T.
, 2010, “
Thermodynamic Effects of Linear Dissipative Small Deformations
,”
J. Therm. Anal. Calorim.
,
100
, pp.
941
947
.
49.
Choi
,
I.
, and
Horgan
,
C. O.
, 1977, “
Saint-Venant’s Principal and End Effects in Anisotropic Elasticity
,”
J. Appl. Mech.
,
44
, pp.
424
430
.
50.
Nyashin
,
Y.
,
Lokhov
,
V.
, and
Kolenda
,
J.
, 2007, “
On the Stress-Strain Relations in Viscoelastic Solids
,”
Mar. Technol. Trans.
,
18
, pp.
75
84
.
51.
Beer
,
F. P.
, and
Johanston
,
E. R.
, 1992,
Mechanics of Materials
,
2nd ed.
,
McGraw-Hill
,
London
, pp.
353
366
.
52.
Popov
,
E. P.
, 1996,
Mechanics of Materials
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
43
45
.
You do not currently have access to this content.