We present a new one-dimensional model of gas transport in the human adult lung. The model comprises asymmetrically branching airways, and heterogeneous interregional ventilation. Our model differs from previous models in that we consider the asymmetry in both the conducting and the acinar airways in detail. Another novelty of our model is that we use simple analytical relationships to produce physiologically realistic models of the conducting and acinar airway trees. With this new model, we investigate the effects of airway asymmetry and heterogeneous interregional ventilation on the phase III slope in multibreath washouts. The model predicts the experimental trend of the increase in the phase III slope with breath number in multibreath washout studies for nitrogen, SF6 and helium. We confirm that asymmetrical branching in the acinus controls the magnitude of the first-breath phase III slope and find that heterogeneous interregional ventilation controls the way in which the slope changes with subsequent breaths. Asymmetry in the conducting airways appears to have little effect on the phase III slope. That the increase in slope appears to be largely controlled by interregional ventilation inhomogeneities should be of interest to those wishing to use multibreath washouts to detect the location of the structural abnormalities within the lung.

References

References
1.
Bourdin
,
A.
,
Paganin
,
F.
,
Préfaut
,
C.
,
Kieseler
,
D.
,
Godard
,
P.
, and
Chanez
P.
, 2006, “
Nitrogen Washout Slope in Poorly Controlled Asthma
,”
Allergy
61
(
1
), pp.
85
89
.
2.
Verbanck
,
S.
,
Schuermans
,
D.
,
Noppen
,
M.
,
Van Muylem
,
A.
,
Paiva
,
M.
, and
Vincken
W.
, 1999, “
Evidence of Acinar Airway Involvement in Asthma
,”
Am. J. Respir. Crit. Care Med.
159
(
5
), pp.
1545
1550
.
3.
Aurora
,
P.
,
Gustafsson
,
P.
,
Bush
,
A.
,
Lindblad
,
A.
,
Oliver
,
C.
,
Wallis
,
C. E.
, and
Stocks
J.
, 2004, “
Multiple Breath Inert Gas Washout as a Measure of Ventilation Distribution in Children with Cystic Fibrosis
,”
Thorax
,
59
(
12
), pp.
1008
1010
.
4.
Horsley
,
A. R.
,
Macleod
,
K. A.
,
Robson
,
A. G.
,
Lenney
,
J.
,
Bell
,
N. J.
,
Cunningham
,
S.
,
Greening
,
A. P.
,
Gustafsson
,
P. M.
, and
Innes
J. A.
, 2008, “
Effects of Cystic Fibrosis Lung Disease on Gas Mixing Indices Derived from Alveolar Slope Analysis
,”
Respir. Physiol. Neurobiol.
162
(
3
), pp.
197
203
.
5.
Verbanck
,
S.
,
Schuermans
,
D.
,
Meysman
,
M.
,
Paiva
,
M.
, and
Vincken
W.
, 2004, “
Noninvasive Assessment of Airway Alterations in Smokers: The Small Airways Revisited
,”
Am. J. Respir. Crit. Care Med.
,
170
(
4
), pp.
414
419
.
6.
Akamatsu
,
K.
,
Matsunaga
,
K.
,
Sugiura
,
H.
,
Koarai
,
A.
,
Hirano
,
T.
,
Minakata
,
Y.
, and
Ichinose
M.
, 2011, “
Improvement of Airflow Limitation by Fluticasone Propionate/Salmeterol in Chronic Obstructive Pulmonary Disease: What is the Specific Marker?
Front. Pharmacol.
,
2
, pp.
36
41
.
7.
Robinson
,
P. D.
,
Goldman
,
M. D.
, and
Gustafsson
,
P. M.
, 2009, “
Inerst Gas Washout: Theoretical Background and Clinical Utility in Respiratory Disease
,”
Respiration
,
78
(
3
), pp.
339
355
.
8.
Crawford
,
A. B. H.
,
Makowska
,
M.
,
Paiva
,
M.
, and
Engel
,
L. A.
, 1985, “
Convection- and Diffusion Dependent Ventilation Maldistribution in Normal Subjects
,”
J Appl. Physiol.
,
59
, pp.
838
846
.
9.
Verbanck
,
S.
, and
Paiva
,
M.
, 1990, “
Model Simulations of Gas Mixing and Ventilation Distribution in the Human Lung
,”
J. Appl. Physiol.
,
69
, pp.
2269
2279
.
10.
Tawhai
,
M. H.
, and
Hunter
,
P. J.
, 2001, “
Multibreath Washout Analysis: Modelling the Influence of Conducting Airway Ssymmetry
,”
Respir. Physiol.
,
127
(
2–3
), pp.
249
258
.
11.
Scherer
,
P. W.
,
Neff
,
J. D.
,
Baumgardner
,
J. E.
, and
Neufeld
,
G. R.
, 1996, “
The Importance of a Source Term in Modeling Multibreath Inert Gas Washout
,”
Respir. Physiol.
,
103
, pp.
99
103
.
12.
Cruz
,
J. C.
,
Jeng
,
D.-R.
,
Han
,
D.
,
Wu
,
G.
, and
Flores
X. F.
, 1997, “
Ventilation Inhomogeneities and Mixed Venous Blood N2 in Multibreath N2 Washout
,”
Respir. Physiol.
110
, pp.
47
56
.
13.
Scherer
,
P. W.
,
Shendalman
,
L. H.
and
Greene
,
N. M.
, 1972, “
Simultaneous Diffusion and Convection in Single Breath Lung Washout
Bull. Math. Biophys.
,
34
(
3
), pp.
393
412
.
14.
Paiva
M
, 1973, “
Gas Transport in the Human Lung
,”
J. Appl. Physiol.
,
35
, pp.
401
410
.
15.
Majumdar
,
A.
,
Alencar
,
A. M.
,
Buldyrev
,
S. V.
,
Hantos
,
Z.
,
Lutchen
,
K. R.
,
Stanley
,
H. E.
, and
Suki
,
B.
, 2005, “
Relating Airway Diameter Distributions to Regular Branching Asymmetry in the Lung
,”
Phys. Rev. Lett.
,
95
, p.
168101
.
16.
Weibel
,
E. R.
,
Sapovale
,
B.
, and
Filoche
,
M.
, 2005, “
Design of Peripheral Airways for Efficient Gas Exchange
,”
Respir. Physiol. Neurobiol.
,
148
, pp.
3
21
.
17.
Prisk
,
G. K.
,
Elliott
,
A. R.
,
Guy
,
H. J. B.
,
Verbanck
,
S.
,
Paiva
,
M.
, and
West
,
J. B.
, 1998, “
Multiple-breath Washin of Helium and Sulfur Hexaflouride in Sustained Microgravity
,”
J. Appl. Physiol.
84
, pp.
244
252
.
18.
Grönkvist
,
M.
,
Bergsten
,
E.
, and
Gustafsson
,
P. M.
, 2002, “
Effects of Body Posture and Tidal Volume on Inter- and Intraregional Ventilation Distribution in Healthy Men
,”
J. Appl. Physiol.
,
92
(
2
), pp.
634
642
.
19.
Dutrieue
,
B.
,
Vanholsbeeck
,
F.
,
Verbanck
,
S.
, and
Paiva
M
, 2000, “
A Human Acinar Structure for Simulation of Realistic Alveolar Plateau Slopes
,”
J. Appl. Physiol.
89
, pp.
1859
1867
.
20.
Haefeli-Bleuer
,
B.
, and
Weibel
E. R.
, 1988, “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
220
(
4
), pp.
401
414
.
21.
Anthonisen
,
N. R.
,
Robertson
,
P. C.
, and
Ross
W. R.D.
, 1970, “
Gravity-dependent Sequential Emptying of Lung Regions
,”
J. Appl. Physiol.
28
,
589
595
.
22.
Raabe
,
O. G.
,
Yeh
,
H.-C.
,
Schum
,
G. M.
, and
Phalen
,
R. F.
, 1976, “
Tracheobronchial Geometry: Human, Dog, Rat, Hamster
,” Technical Report No. LF-53.
23.
Federspiel
,
W. J.
, and
Fredberg
,
J. J.
, 1988, “
Axial Dispersion in Respiratory Bronchioles and Alveolar Ducts
,”
J. Appl. Physiol.
64
, pp.
2614
2621
.
24.
Tsuda
,
A.
,
Federspiel
,
W. J.
,
Grant
, Jr.,
P. A.
, and
Fredberg
,
J. J.
, 1991, “
Axial Dispersion of Inert Species in Alveolated Channels
,”
Chem. Eng. Sci.
,
46
(
516
), pp.
1419
1426
.
You do not currently have access to this content.