An idealized systemic-to-pulmonary shunt anatomy is parameterized and coupled to a closed loop, lumped parameter network (LPN) in a multidomain model of the Norwood surgical anatomy. The LPN approach is essential for obtaining information on global changes in cardiac output and oxygen delivery resulting from changes in local geometry and physiology. The LPN is fully coupled to a custom 3D finite element solver using a semi-implicit approach to model the heart and downstream circulation. This closed loop multidomain model is then integrated with a fully automated derivative-free optimization algorithm to obtain optimal shunt geometries with variable parameters of shunt diameter, anastomosis location, and angles. Three objective functions: (1) systemic; (2) coronary; and (3) combined systemic and coronary oxygen deliveries are maximized. Results show that a smaller shunt diameter with a distal shunt-brachiocephalic anastomosis is optimal for systemic oxygen delivery, whereas a more proximal anastomosis is optimal for coronary oxygen delivery and a shunt between these two anatomies is optimal for both systemic and coronary oxygen deliveries. Results are used to quantify the origin of blood flow going through the shunt and its relationship with shunt geometry. Results show that coronary artery flow is directly related to shunt position.

References

References
1.
Canfield
,
M.
,
Honein
,
M.
,
Yuskiv
,
N.
,
Xing
,
J.
,
Mai
,
C.
,
Collins
,
J.
,
Devine
,
O.
,
Petrini
,
J.
,
Ramadhani
,
T.
,
Hobbs
,
C.
, and
Kirby
,
R.
, 2006, “
National Estimates and Race/Ethnic-Specific Variation of Selected Birth Defects in the United States, 1999–2001
,”
Birth Defects Res. A
,
76
(
11
), pp.
747
756
.
2.
Tikkanen
,
J.
, and
Heinonen
,
O.
, 1994, “
Risk Factors for Hypoplastic Left Heart Syndrome
,”
Teratology
,
50
(
2
), pp.
112
117
.
3.
Norwood
,
W.
,
Kirklin
,
J.
, and
Sanders
,
S.
, 1980, “
Hypoplastic Left Heart Syndrome: Experience With Palliative Surgery
,”
Am. J. Cardiol.
,
45
(
1
), pp.
87
91
.
4.
Norwood
,
W.
,
Lang
,
P.
,
Castaneda
,
A.
, and
Campbell
,
D.
,1981, “
Experience With Operations for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
82
, pp.
511
519
.
5.
Wong
,
R.
,
Baum
,
V.
, and
Sangwan
,
S.
, 1991, “
Truncus Arteriosus: Recognition and Therapy of Intraoperative Cardiac Ischemia
,”
Anesthesiology
,
74
(
2
), pp.
378
380
.
6.
Bartram
,
U.
,
Grnenfelder
,
J.
, and
Praagh
,
R. V.
, 1997, “
Causes of Death After the Modified Norwood Procedure: A Study of 122 Postmortem Cases
,”
Ann. Thorac. Surg.
,
64
(
6
), pp.
1795
1802
.
7.
Tweddell
,
J.
,
Ghanayem
,
N.
,
Mussatto
,
K.
,
Mitchell
,
M.
,
Lamers
,
L.
,
Musa
,
N.
,
Berger
,
S.
,
Litwin
,
S. B.
, and
Hoffman
,
G.
, 2007, “
Mixed Venous Oxygen Saturation Monitoring After Stage 1 Palliation for Hypoplastic Left Heart Syndrome
,”
Ann. Thorac. Surg.
,
84
(
4
), pp.
1301
1311
.
8.
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
,
Pietrabissa
,
R.
,
Urcelay
,
G.
,
Bove
,
E.
,
Hsia
,
T.
, and
de Leval
,
M.
, 2001, “
Modeling of the Norwood Circulation: Effects of Shunt Size, Vascular Resistances, and Heart Rate
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
, pp.
H2076
H2086
. Available at http://ajpheart.physiology.org/content/280/5/H2076.abstract.
9.
Ashburn
,
D.
,
McCrindle
,
B.
,
Tchervenkov
,
C.
,
Jacobs
,
M.
,
Lofland
,
G.
,
Bove
,
E.
,
Spray
,
T.
,
Williams
,
W.
, and
Blackstone
,
E.
, 2003, “
Outcomes After the Norwood Operation in Neonates With Critical Aortic Stenosis or Aortic Valve Atresia
,”
J. Thorac. Cardiovasc. Surg.
,
125
(
5
), pp.
1070
1082
.
10.
Migliavacca
,
F.
,
Dubini
,
G.
,
Pennati
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
,
Hsia
,
T.
, and
de Leval
,
M.
, 2000, “
Computational Model of the Fluid Dynamics in Systemic-to-Pulmonary Shunts
,”
J. Biomech.
,
33
(
5
), pp.
549
557
.
11.
Migliavacca
,
F.
,
Pennati
,
G.
,
Martino
,
E. D.
,
Dubini
,
G.
, and
Pietrabissa
,
R.
, 2002, “
Pressure Drops in a Distensible Model of End-to-Side Anastomosis in Systemic-to-Pulmonary Shunts
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
3
), pp.
243
248
.
12.
Waniewski
,
J.
,
Kurowska
,
W.
,
Mizerski
,
J.
,
Trykozko
,
A.
,
Nowiski
,
K.
,
Brzeziska-Rajszys
,
G.
, and
Kociesza
,
A.
, 2005, “
The Effects of Graft Geometry on the Patency of a Systemic-to-Pulmonary Shunt: A Computational Fluid Dynamics Study
,”
Artif. Organs
,
29
, pp.
642
650
.
13.
Pennati
,
G.
,
Fiore
,
G. B.
,
Migliavacca
,
F.
,
Lagan
,
K.
,
Fumero
,
R.
, and
Dubini
,
G.
, 2001, “
In Vitro Steady-Flow Analysis of Systemic-to-Pulmonary Shunt Haemodynamics
,”
J. Biomech.
,
34
(
1
), pp.
23
30
.
14.
Pennati
,
G.
,
Migliavacca
,
F.
,
Gervaso
,
F.
, and
Dubini
,
G.
, 2004, “
Assessment by Computational and In Vitro Studies of the Blood Flow Rate Through Modified Blalock-Taussig Shunts
,”
Cardiol. Young
,
14
, pp.
24
29
.
15.
Lagana
,
K.
,
Balossino
,
R.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Bove
,
E.
,
de Leval
,
M.
, and
Dubini
,
G.
, 2005, “
Multiscale Modeling of the Cardiovascular System: Application to the Study of Pulmonary and Coronary Perfusions in the Univentricular Circulation
,”
J. Biomech.
,
38
(
5
), pp.
1129
1141
.
16.
Migliavacca
,
F.
,
Balossino
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T.
,
de Leval
,
M.
, and
Bove
,
E.
, 2006, “
Multiscale Modelling in Biofluiddynamics: Application to Reconstructive Paediatric Cardiac Surgery
,”
J. Biomech.
,
39
(
6
), pp.
1010
1020
.
17.
Quarteroni
,
A.
, and
Rozza
,
G.
, 2003, “
Optimal Control and Shape Optimization of Aorto-Coronaric Bypass Anastomoses
,”
Math. Models Meth. Appl. Sci.
,
12
, pp.
1801
1824
.
18.
Abraham
,
F.
,
Behr
,
M.
, and
Heinkenschloss
,
M.
, 2005, “
Shape Optimization in Steady Blood Flow: A Numerical Study of Non-Newtonian Effects
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
2
), pp.
127
137
.
19.
Abraham
,
F.
,
Behr
,
M.
, and
Heinkenschloss
,
M.
, 2005, “
Shape Optimization in Unsteady Blood Flow: A Numerical Study of Non-Newtonian Effects
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
3
), pp.
201
212
.
20.
Burgreen
,
W.
,
Antaki
,
F.
,
Wu
,
Z.
, and
Holmes
,
A.
, 2001, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
,
25
(
5
), pp.
336
340
.
21.
Abramson
,
M.
,
Audet
,
C.
,
Chrissis
,
J.
, and
Walston
,
J.
, 2009, “
Mesh Adaptive Direct Search Algorithms for Mixed Variable Optimization
,”
Optim. Lett.
,
3
(
1
), pp.
35
47
.
22.
Marsden
,
A.
,
Wang
,
M.
,
Dennis
,
J.
, and
Moin
,
P.
, 2004, “
Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework
,”
Optim. Eng.
,
5
, pp.
235
262
.
23.
Marsden
,
A.
,
Wang
,
M.
,
Dennis
,
J.
, and
Moin
,
P.
, 2004, “
Suppression of Vortex-Shedding Noise via Derivative-Free Shape Optimization
,”
Phys. Fluids
,
16
(
10
), pp.
L83
L86
.
24.
Yang
,
W.
,
Jeffrey
,
A.
, and
Marsden
,
A.
, 2010, “
Constrained Optimization of an Idealized Y-Shaped Baffle for the Fontan Surgery at Rest and Exercise
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2135
2149
.
25.
Marsden
,
A.
,
Feinstein
,
J.
, and
Taylor
,
C.
, 2008, “
A Computational Framework for Derivative-Free Optimization of Cardiovascular Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
21–24
), pp.
1890
1905
.
26.
Moghadam
,
M. E.
,
Bazilevs
,
Y.
,
Hsia
,
T.
,
Vignon-Clementel
,
I.
, and
Marsden
,
A.
, 2011, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.
27.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T.
,
Moser
,
R.
, and
Zhang
,
Y.
, 2009, “
Patient-Specific Isogeometric Fluid-Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.
28.
Whiting
,
C.
, and
Jansen
,
K.
, 2001, “
A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.
29.
Franca
,
L.
, and
Frey
,
S.
, 1992, “
Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
209
233
.
30.
Brooks
,
A.
, and
Hughes
,
T.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.
31.
Tezduyar
,
T.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
,
43
(
5
), pp.
555
575
.
32.
Bazilevs
,
Y.
,
Calo
,
V.
,
Cottrell
,
J.
,
Hughes
,
T.
,
Reali
,
A.
, and
Scovazzi
,
G.
, 2007, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
1–4
), pp.
173
201
.
33.
Jansen
,
K.
,
Whiting
,
C.
, and
Hulbert
,
G.
, 2000, “
A Generalized-[alpha] Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.
34.
Moghadam
,
M. E.
,
Vignon-Clementel
,
I.
,
Figliola
,
R.
, and
Marsden
,
A
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
(submitted).
35.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
, 2001, “
Coupling Between Lumped and Distributed Models for Blood Flow Problems
,”
Comput. Visualization Sci.
,
4
, pp.
111
124
.
36.
Barnea
,
O.
,
Santamore
,
W.
,
Rossi
,
A.
,
Salloum
,
E.
,
Chien
,
S.
, and
Austin
,
E.
, 1998, “
Estimation of Oxygen Delivery in Newborns With a Univentricular Circulation
,”
Circulation
,
98
(
14
), pp.
1407
1413
.
37.
Booker
,
A.
,
Dennis
,
J.
,
Frank
,
P.
,
Serafini
,
D.
,
Torczon
,
V.
, and
Trosset
,
M.
, 1999, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Multidiscip. Optim.
,
17
, pp.
1
13
.
38.
Audet
,
C.
, and
Dennis
,
J.
, 2006, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
, pp.
188
217
.
39.
Abramson
,
M.
,
Audet
,
C.
,
Dennis
,
J.
, and
Digabel
,
S.
, 2009, “
OrthoMADS: A Deterministic MADS Instance With Orthogonal Directions
,”
SIAM J. Optim.
,
20
, pp.
948
966
.
40.
Schmidt
,
J.
,
Delp
,
S.
,
Sherman
,
M.
,
Taylor
,
C.
,
Pande
,
V.
, and
Altman
,
R.
, 2008, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE
,
96
(
8
), pp.
1266
1280
.
41.
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
, 2010, “
Outflow Boundary Conditions for Three-Dimensional Simulations of Non-periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
42.
Pennati
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Bove
,
E.
, 2010, “
Modeling of Systemic-to-Pulmonary Shunts in Newborns With a Univentricular Circulation: State of the Art and Future Directions
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
23
29
.
43.
Long
,
C.
,
Hsu
,
M.
,
Bazilevs
,
Y.
,
Feinstein
,
J.
, and
Marsden
,
A.
, “
Fluid-Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Meth. Biomed. Eng.
(to appear).
You do not currently have access to this content.