Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.

References

References
1.
Gillies
,
R. J.
,
Schornack
,
P. A.
,
Secomb
,
T. W.
, and
Raghunand
,
N.
, 1999, “
Causes and Effects of Heterogeneous Perfusion in Tumors
,”
Neoplasia
,
1
(
3
), pp.
197
207
.
2.
Baguley
,
B. C.
, and
Finlay
,
G. J.
, 1995, “
Pharmacokinetic/Cytokinetic Principles in the Chemotherapy of Solid Tumours
,”
Clin. Exp. Pharmacol. Physiol.
,
22
(
11
), pp.
825
828
.
3.
Durand
,
R. E.
, 1990, “
Slow Penetration of Anthracyclines Into Spheroids and Tumors: A Therapeutic Advantage?
,”
Cancer Chemother. Pharmacol.
,
26
(
3
), pp.
198
204
.
4.
Erlanson
,
M.
,
Daniel-Szolgay
,
E.
, and
Carlsson
,
J.
, 1992, “
Relations Between the Penetration, Binding and Average Concentration of Cytostatic Drugs in Human Tumour Spheroids
,”
Cancer Chemother. Pharmacol.
,
29
(
5
), pp.
343
353
.
5.
Jang
,
S. H.
,
Wientjes
,
M. G.
,
Lu
,
D.
, and
Au
,
J. L.
, 2003, “
Drug Delivery and Transport to Solid Tumors
,”
Pharm. Res.
,
20
(
9
), pp.
1337
1350
.
6.
Jain
,
R. K.
, 1987, “
Transport of Molecules Across Tumor Vasculature
,”
Cancer Metastasis Rev.
,
6
(
4
), pp.
559
593
.
7.
Jain
,
R. K.
, 1988, “
Transvascular and Interstitial Transport in Tumors
,”
Adv. Exp. Med. Biol.
,
242
, pp.
215
220
.
8.
Jain
,
R. K.
, 1988, “
Determinants of Tumor Blood Flow: A Review
,”
Cancer Res.
,
48
(
10
), pp.
2641
2658
.
9.
Jain
,
R. K.
, 1991, “
Haemodynamic and Transport Barriers to the Treatment of Solid Tumours
,”
Int. J. Radiat. Biol.
,
60
(
1–2
), pp.
85
100
.
10.
Jain
,
R. K.
, 1998, “
Delivery of Molecular and Cellular Medicine to Solid Tumors
,”
J. Control Release
,
53
(
1–3
), pp.
49
67
.
11.
Jain
,
R. K.
, 1999, “
Transport of Molecules, Particles, and Cells in Solid Tumors
,”
Annu. Rev. Biomed. Eng.
,
1
, pp.
241
263
.
12.
Jain
,
R. K.
, and
Stylianopoulos
,
T.
, 2010, “
Delivering Nanomedicine to Solid Tumors
,”
Nat. Rev. Clin. Oncol.
,
7
(
11
), pp.
653
664
.
13.
Hori
,
K.
,
Suzuki
,
M.
,
Tanda
,
S.
, and
Saito
,
S.
, 1990, “
in vivo Analysis of Tumor Vascularization in the Rat
,”
Jpn. J. Cancer Res.
,
81
(
3
), pp.
279
288
.
14.
Hori
,
K.
,
Suzuki
,
M.
,
Tanda
,
S.
, and
Saito
,
S.
, 1991, “
Characterization of Heterogeneous Distribution of Tumor Blood Flow in the Rat
,”
Jpn. J. Cancer Res.
,
82
(
1
), pp.
109
117
.
15.
Sevick
,
E. M.
, and
Jain
,
R. K.
, 1991, “
Effect of Red Blood Cell Rigidity on Tumor Blood Flow: Increase in Viscous Resistance During Hyperglycemia
,”
Cancer Res.
,
51
(
10
), pp.
2727
2730
.
16.
Netti
,
P. A.
,
Roberge
,
S.
,
Boucher
,
Y.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
, 1996, “
Effect of Transvascular Fluid Exchange on Pressure–Flow Relationship in Tumors: A Proposed Mechanism for Tumor Blood Flow Heterogeneity
,”
Microvasc. Res.
,
52
(
1
), pp.
27
46
.
17.
Baish
,
J. W.
,
Netti
,
P. A.
, and
Jain
,
R. K.
, 1997, “
Transmural Coupling of Fluid Flow in Microcirculatory Network and Interstitium in Tumors
,”
Microvasc. Res.
,
53
(
2
), pp.
128
141
.
18.
Hashizume
,
H.
,
Baluk
,
P.
,
Morikawa
,
S.
,
McLean
,
J. W.
,
Thurston
,
G.
,
Roberge
,
S.
,
Jain
,
R. K.
, and
McDonald
,
D. M.
, 2000, “
Openings Between Defective Endothelial Cells Explain Tumor Vessel Leakiness
,”
Am. J. Pathol.
,
156
(
4
), pp.
1363
1380
.
19.
Mollica
,
F.
,
Jain
,
R. K.
, and
Netti
,
P. A.
, 2003, “
A Model for Temporal Heterogeneities of Tumor Blood Flow
,”
Microvasc. Res.
,
65
(
1
), pp.
56
60
.
20.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
, 1995, “
Time-Dependent Behavior of Interstitial Fluid Pressure in Solid Tumors: Implications for Drug Delivery
,”
Cancer Res.
,
55
(
22
), pp.
5451
5458
.
21.
Netti
,
P. A.
,
Hamberg
,
L. M.
,
Babich
,
J. W.
,
Kierstead
,
D.
,
Graham
,
W.
,
Hunter
,
G. J.
,
Wolf
,
G. L.
,
Fischman
,
A.
,
Boucher
,
Y.
, and
Jain
,
R. K.
, 1999, “
Enhancement of Fluid Filtration Across Tumor Vessels: Implication for Delivery of Macromolecules
,”
Proc. Natl. Acad. Sci. USA
,
96
(
6
), pp.
3137
3142
.
22.
Pozrikidis
,
C.
, 2010, “
Numerical Simulation of Blood and Interstitial Flow Through a Solid Tumor
,”
J. Math. Biol.
,
60
(
1
), pp.
75
94
.
23.
Pozrikidis
,
C.
, and
Farrow
,
D. A.
, 2003, “
A Model of Fluid Flow in Solid Tumors
,”
Ann. Biomed. Eng.
,
31
(
2
), pp.
181
194
.
24.
Wu
,
J.
,
Long
,
Q.
,
Xu
,
S.
, and
Padhani
,
A. R.
, 2009, “
Study of Tumor Blood Perfusion and Its Variation due to Vascular Normalization by Anti-Angiogenic Therapy Based on 3D Angiogenic Microvasculature
,”
J. Biomech.
,
42
(
6
), pp.
712
721
.
25.
Wu
,
J.
,
Xu
,
S.
,
Long
,
Q.
,
Collins
,
M. W.
,
Konig
,
C. S.
,
Zhao
,
G.
,
Jiang
,
Y.
, and
Padhani
,
A. R.
, 2008, “
Coupled Modeling of Blood Perfusion in Intravascular, Interstitial Spaces in Tumor Microvasculature
,”
J. Biomech.
,
41
(
5
), pp.
996
1004
.
26.
Milosevic
,
M. F.
,
Fyles
,
A. W.
, and
Hill
,
R. P.
, 1999, “
The Relationship Between Elevated Interstitial Fluid Pressure and Blood Flow in Tumors: A Bioengineering Analysis
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
43
(
5
), pp.
1111
1123
.
27.
Czabanka
,
M.
,
Vinci
,
M.
,
Heppner
,
F.
,
Ullrich
,
A.
, and
Vajkoczy
,
P.
, 2009, “
Effects of Sunitinib on Tumor Hemodynamics and Delivery of Chemotherapy
,”
Int. J. Cancer
,
124
(
6
), pp.
1293
1300
.
28.
Eichhorn
,
M. E.
,
Strieth
,
S.
,
Luedemann
,
S.
,
Kleespies
,
A.
,
Noth
,
U.
,
Passon
,
A.
,
Brix
,
G.
,
Jauch
,
K. W.
,
Bruns
,
C. J.
, and
Dellian
,
M.
, 2008, “
Contrast Enhanced MRI and Intravital Fluorescence Microscopy Indicate Improved Tumor Microcirculation in Highly Vascularized Melanomas Upon Short-Term Anti-VEGFR Treatment
,”
Cancer Biol. Ther.
,
7
(
7
), pp.
1006
1013
.
29.
Jain
,
R. K.
, 2005, “
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
,”
Science
,
307
(5706), pp.
58
62
.
30.
Jain
,
R. K.
, 2008, “
Lessons from Multidisciplinary Translational Trials on Anti-Angiogenic Therapy of Cancer
,”
Nat. Rev. Cancer
,
8
(
4
), pp.
309
316
.
31.
Willett
,
C. G.
,
Boucher
,
Y.
, di
Tomaso
,
E.
,
Duda
,
D. G.
,
Munn
,
L. L.
,
Tong
,
R. T.
,
Chung
,
D. C.
,
Sahani
,
D. V.
,
Kalva
,
S. P.
,
Kozin
,
S. V.
,
Mino
,
M.
,
Cohen
,
K. S.
,
Scadden
,
D. T.
,
Hartford
,
A. C.
,
Fischman
,
A. J.
,
Clark
,
J. W.
,
Ryan
,
D. P.
,
Zhu
,
A. X.
,
Blaszkowsky
,
L. S.
,
Chen
,
H. X.
,
Shellito
,
P. C.
,
Lauwers
,
G. Y.
, and
Jain
,
R. K.
, 2004, “
Direct Evidence That the VEGF-Specific Antibody Bevacizumab Has Antivascular Effects in Human Rectal Cancer
,”
Nat. Med.
,
10
(
2
), pp.
145
147
.
32.
Chaplain
,
M. A.
,
McDougall
,
S. R.
, and
Anderson
,
A. R.
, 2006, “
Mathematical Modeling of Tumor-Induced Angiogenesis
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
233
257
.
33.
Helfand
,
S. C.
, 2008, “
Canine Hemangiosarcoma: A Tumor of Contemporary Interest
,”
Cancer Ther.
,
6
, pp.
457
462
.
34.
Mantzaris
,
N. V.
,
Webb
,
S.
, and
Othmer
,
H. G.
, 2004, “
Mathematical Modeling of Tumor-Induced Angiogenesis
,”
J. Math. Biol.
,
49
(
2
), pp.
111
187
.
35.
Boucher
,
Y.
,
Leunig
,
M.
, and
Jain
,
R. K.
, 1996, “
Tumor Angiogenesis and Interstitial Hypertension
,”
Cancer Res.
,
56
(
18
), pp.
4264
4266
.
36.
Boucher
,
Y.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
, 1990, “
Interstitial Pressure Gradients in Tissue-Isolated and Subcutaneous Tumors: Implications for Therapy
,”
Cancer Res.
,
50
(
15
), pp.
4478
4484
.
37.
Jain
,
R. K.
,
Tong
,
R. T.
, and
Munn
,
L. L.
, 2007, “
Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights From a Mathematical Model
,”
Cancer Res.
,
67
(
6
), pp.
2729
2735
.
38.
Liu
,
Q.
,
Mirc
,
D.
, and
Fu
,
B. M.
, 2008, “
Mechanical Mechanisms of Thrombosis in Intact Bent Microvessels of Rat Mesentery
,”
J. Biomech.
,
41
(
12
), pp.
2726
2734
.
39.
Yuan
,
F.
,
Dellian
,
M.
,
Fukumura
,
D.
,
Leunig
,
M.
,
Berk
,
D. A.
,
Torchilin
,
V. P.
, and
Jain
,
R. K.
, 1995, “
Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size
,”
Cancer Res.
,
55
(
17
), pp.
3752
3756
.
40.
Stohrer
,
M.
,
Boucher
,
Y.
,
Stangassinger
,
M.
, and
Jain
,
R. K.
, 2000, “
Oncotic Pressure in Solid Tumors Is Elevated
,”
Cancer Res.
,
60
(
15
), pp.
4251
4255
.
41.
Skalak
,
T. C.
, and
Schmid-Schonbein
,
G. W.
, 1986, “
The Microvasculature in Skeletal Muscle. IV. A Model of the Capillary Network
,”
Microvasc. Res.
,
32
(
3
), pp.
333
347
.
42.
Schmid-Schonbein
,
G. W.
, 1988, “
A Theory of Blood Flow in Skeletal Muscle
,”
J. Biomech. Eng.
,
110
(
1
), pp.
20
26
.
43.
Lu
,
D.
,
Wientjes
,
M. G.
,
Lu
,
Z.
, and
Au
,
J. L.
, 2007, “
Tumor Priming Enhances Delivery and Efficacy of Nanomedicines
,”
J. Pharmacol. Exp. Ther.
,
322
(
1
), pp.
80
88
.
44.
Leunig
,
M.
,
Yuan
,
F.
,
Menger
,
M. D.
,
Boucher
,
Y.
,
Goetz
,
A. E.
,
Messmer
,
K.
, and
Jain
,
R. K.
, 1992, “
Angiogenesis, Microvascular Architecture, Microhemodynamics, and Interstitial Fluid Pressure During Early Growth of Human Adenocarcinoma LS174T in SCID Mice
,”
Cancer Res.
,
52
(
23
), pp.
6553
6560
.
45.
Pries
,
A. R.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
, 1992, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Am. J. Physiol.
,
263
(6, Pt 2), pp.
H1770
H1778
.
46.
Sugihara-Seki
,
M.
, and
Fu
,
B. M. M.
, 2005, “
Blood Flow and Permeability in Microvessels
,”
Fluid dynamics research
37
, pp.
82
132
.
47.
Baxter
,
L. T.
, and
Jain
,
R. K.
, 1989, “
Transport of Fluid and Macromolecules in Tumors. I. Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
,
37
(
1
), pp.
77
104
.
48.
Boucher
,
Y.
,
Brekken
,
C.
,
Netti
,
P. A.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
, 1998, “
Intratumoral Infusion of Fluid: Estimation of Hydraulic Conductivity and Implications for the Delivery of Therapeutic Agents
,”
Br. J. Cancer
,
78
(
11
), pp.
1442
1448
.
49.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
, 2000, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
(
9
), pp.
2497
2503
.
50.
Griffon-Etienne
,
G.
,
Boucher
,
Y.
,
Brekken
,
C.
,
Suit
,
H. D.
, and
Jain
,
R. K.
, 1999, “
Taxane-Induced Apoptosis Decompresses Blood Vessels and Lowers Interstitial Fluid Pressure in Solid Tumors: Clinical Implications
,”
Cancer Res.
,
59
(
15
), pp.
3776
3782
.
51.
Neal
,
C. R.
, and
Michel
,
C. C.
, 2000, “
Effects of Temperature on the Wall Strength and Compliance of Frog Mesenteric Microvessels
,”
J. Physiol.
,
526
(Pt 3), pp.
613
622
.
52.
Paulsson
,
M.
, 1992, “
Basement Membrane Proteins: Structure, Assembly, and Cellular Interactions
,”
Crit. Rev. Biochem. Mol. Biol.
,
27
(1–2), pp.
93
127
.
53.
Ribatti
,
D.
,
Nico
,
B.
,
Crivellato
,
E.
, and
Vacca
,
A.
, 2007, “
The Structure of the Vascular Network of Tumors
,”
Cancer Lett.
,
248
(
1
), pp.
18
23
.
You do not currently have access to this content.