Drug-resistant hypertensive patients may be treated by mechanical stimulation of stretch-sensitive baroreceptors located in the sinus of carotid arteries. To evaluate the efficacy of endovascular devices to stretch the carotid sinus such that the induced strain might trigger baroreceptors to increase action potential firing rate and thereby reduce systemic blood pressure, numerical simulations were conducted of devices deployed in subject-specific carotid models. Two models were chosen—a typical physiologic carotid and a diminutive atypical physiologic model representing a clinically worst case scenario—to evaluate the effects of device deployment in normal and extreme cases, respectively. Based on the anatomical dimensions of the carotids, two different device sizes were chosen out of five total device sizes available. A fluid structure interaction (FSI) simulation methodology with contact surface between the device and the arterial wall was implemented for resolving the stresses and strains induced by device deployment. Results indicate that device deployment in the carotid sinus of the physiologic model induces an increase of 2.5% and 7.5% in circumferential and longitudinal wall stretch, respectively, and a maximum of 54% increase in von Mises arterial stress at the sinus wall baroreceptor region. The second device, deployed in the diminutive carotid model, induces an increase of 6% in both circumferential and longitudinal stretch and a 50% maximum increase in von Mises stress at the sinus wall baroreceptor region. Device deployment has a minimal effect on blood-flow patterns, indicating that it does not adversely affect carotid bifurcation hemodynamics in the physiologic model. In the smaller carotid model, deployment of the device lowers wall shear stress at sinus by 16% while accelerating flow entering the external carotid artery branch. Our FSI simulations of carotid arteries with deployed device show that the device induces localized increase in wall stretch at the sinus, suggesting that this will activate baroreceptors and subsequently may control hypertension in drug-resistant hypertensive patients, with no consequential deleterious effects on the carotid sinus hemodynamics.

References

References
1.
Ong
,
K. L.
,
Cheung
,
B. M. Y.
,
Man
,
Y. B.
,
Lau
,
C. P.
, and
Lam
,
K. S. L.
, 2007, “
Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999–2004
,”
Hypertension
,
49
(
1
), pp.
69
75
.
2.
Calhoun
,
D. A.
,
Jones
,
D.
,
Textor
,
S.
,
Goff
,
D. C.
,
Murphy
,
T. P.
,
Toto
,
R. D.
,
White
,
A.
,
Cushman
,
W. C.
,
White
,
W.
,
Sica
,
D.
,
Ferdinand
,
K.
,
Giles
,
T. D.
,
Falkner
,
B.
, and
Carey
,
R. M.
, 2008, “
Resistant Hypertension: Diagnosis, Evaluation, and Treatment—A Scientific Statement From the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research
,”
Hypertension
,
51
(
6
), pp.
1403
1419
.
3.
Eckberg
,
D. L.
,
Cavanaugh
,
M. S.
,
Mark
,
A. L.
, and
Abboud
,
F. M.
, 1975, “
A Simplified Neck Suction Device for Activation of Carotid Baroreceptors
,”
J. Lab. Clin. Med.
,
85
(
1
), pp.
167
173
, 1975.
4.
Elbert
,
T.
,
Tafilklawe
,
M.
,
Rau
,
H.
, and
Lutzenberger
,
W.
, 1991, “
Unilateral Stimulation of Carotid-Sinus Baroreceptors
,”
Int. J. Psychophysiol.
,
11
(
1
), pp.
25
26
.
5.
Tordoir
,
J. H. M.
,
Scheffers
,
I.
,
Schmidli
,
J.
,
Savolainen
,
H.
,
Liebeskind
,
U.
,
Hansky
,
B.
,
Herold
,
U.
,
Irwin
,
E.
,
Kroon
,
A. A.
,
de Leeuw
,
P.
,
Peters
,
T. K.
,
Kievala
,
R.
, and
Cody
,
R.
, 2007 “
An Implantable Carotid Sinus Baroreflex Activating System: Surgical Technique and Short-Term Outcome From a Multi-Center Feasibility Trial for the Treatment of Resistant Hypertension
,”
Eur. J. Vasc. Endovasc. Surg.
,
33
(
4
), pp.
414
421
.
6.
Filippone
,
J. D.
,
Sloand
,
J. A.
,
Illig
,
K. A.
, and
Bisognano
,
J. D.
, 2006, “
Electrical Stimulation of the Carotid Sinus for the Treatment of Resistant Hypertension
,”
Curr. Hypertension Rep.
,
8
(
5
),
420
424
.
7.
Itoh
,
K.
, 1972, “
Studies on Carotid-Body and Carotid-Sinus—Effects on Heart by Electrical Stimulation of Carotid-Sinus Wall
,”
Jpn. Heart J.
,
13
(
2
),
136
149
.
8.
Peters
,
T. K.
,
Koralewski
,
H. E.
, and
Zerbst
,
E.
, 1980, “
The Principle of Electrical Carotid-Sinus Nerve-Stimulation—A Nerve Pacemaker System for Angina-Pectoris and Hypertension Therapy
,”
Ann. Biomed. Eng.
,
8
(
4–6
), pp.
445
458
.
9.
Neistadt
,
A.
, and
Schwartz
,
S. I.
, 1967, “
Effects of Electrical Stimulation of Carotid Sinus Nerve in Reversal of Experimentally Induced Hypertension
,”
Surgery
,
61
(
6
), pp.
923
931
.
10.
Epstein
,
S. E.
,
Beiser
,
G. D.
,
Goldstein
.
R. E.
,
Stampfer
,
M.
,
Wechsler
,
A. S.
,
Glick
,
G.
, and
Braunwald
,
E.
, 1969, “
Circulatory Effects of Electrical Stimulation of Carotid Sinus Nerves in Man
,”
Circulation
,
40
(
3
), pp.
269
276
.
11.
Lohmeier
,
T. E.
,
Irwin
,
E. D.
,
Rossing
,
M. A.
,
Serdar
,
D. J.
, and
Kieval
,
R. S.
, 2004, “
Prolonged activation of the baroreflex produces sustained hypotension
,”
Hypertension
,
43
(
2
), pp.
306
311
.
12.
Lohmeier
,
T. E.
,
Dwyer
,
T. M.
,
Hildebrandt
,
D. A.
,
Irwin
,
E. D.
,
Rossing
,
M. A.
,
Serdar
,
D. J.
, and
Kieval
,
R. S.
, 2005, “
Influence of Prolonged Baroreflex Activation on Arterial Pressure in Angiotensin Hypertension
,”
Hypertension
,
46
(
5
),
1194
1200
.
13.
Bisognano
,
J.
,
Sloand
,
J.
,
Papademetriou
,
V.
,
Rothstein
,
M.
,
Sica
,
D.
,
Flack
,
J.
,
Pertile
,
T. L.
,
Kieval
,
R.
, and
Cody
,
R. J.
, 2006, “
An Implantable Carotid Sinus Baroreflex Activating System for Drug-Resistant Hypertension: Interim Chronic Efficacy Results From the Multi-Center Rheos Feasibility Trial
,”
Circulation
,
114
(
18
), p.
575
.
14.
Tordoir
,
J. H. M.
,
Scheffers
,
I.
,
Schmidli
,
J.
,
Savolainen
,
H.
,
Liebeskind
,
U.
,
Hansky
,
B.
,
Herold
,
U.
,
Irwin
,
E.
,
Kroon
,
A. A.
, de
Leeuw
,
P.
,
Peters
,
T.
,
Kieval
,
R.
, and
Cody
,
R.
, 2007, “
An Implantable Carotid Sinus Baroreflex Activating System: Surgical Technique and Short-Term Outcome From a Multi-Center Feasibility Trial for the Treatment of Resistant Hypertension
,”
Eur. J. Vasc. Endovasc. Surg.
33
, pp.
414
421
.
15.
Schlaich
,
M. P.
,
Sobotka
,
P. A.
,
Krum
,
H.
,
Whitbourn
,
R.
,
Walton
,
A.
, and
Esler
,
M. D.
, 2009, “
Renal Denervation as a Therapeutic Approach for Hypertension Novel Implications for an Old Concept
,”
Hypertension
,
54
(
6
), pp.
1195
1201
.
16.
Krum
,
H.
,
Schlaich
,
M.
,
Whitbourn
,
R.
,
Sobotka
,
P. A.
,
Sadowski
,
J.
,
Bartus
,
K.
,
Kapelak
,
B.
,
Walton
,
A.
,
Sievert
,
H.
,
Thambar
,
S.
,
Abraham
,
W. T.
, and
Esler
,
M.
, 2009, “
Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study
,”
Lancet
,
373
(
9671
), pp.
1275
1281
.
17.
Urquiza
,
S. A.
,
Blanco
,
P. J.
,
Venere
,
M. J.
, and
Feijoo
,
R. A.
, 2006, “
Multidimensional Modelling for the Carotid Artery Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
33–36
), pp.
4002
4017
.
18.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 1998, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
28
(
1
), pp.
143
156
.
19.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Holdsworth
,
D. W.
, and
Ethier
,
C. R.
, 1999, “
Accuracy of Computational Hemodynamics in Complex Arterial Geometries Reconstructed From Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
27
(
1
), pp.
32
41
.
20.
Steinman
,
D. A.
,
Poepping
,
T. L.
,
Tambasco
,
M.
,
Rankin
,
R. N.
, and
Holdsworth
,
D. W.
, 2000, “
Flow Patterns at the Stenosed Carotid Bifurcation: Effect of Concentric Versus Eccentric Stenosis
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
415
423
.
21.
Glor
,
F. P.
,
Ariff
,
B.
,
Hughes
,
A. D.
,
Crowe
,
L. A.
,
Verdonck
,
P. R.
,
Barratt
,
D. C.
,
Thom
,
S. A. M.
,
Firmin
,
D. N.
, and
Xu
,
X. Y.
, 2004, “
Image-Based Carotid Flow Reconstruction: A Comparison Between MRI and Ultrasound
,”
Physiol. Meas.
,
25
(
6
),
1495
1509
.
22.
Fu
,
W. Y.
,
Gu
,
Z. Y.
,
Meng
,
X. L.
,
Chu
,
B.
, and
Qiao
,
A.
, 2010, “
Numerical Simulation of Hemodynamics in Stented Internal Carotid Aneurysm Based on Patient-Specific Model
,”
J. Biomech.
,
43
(
7
), pp.
1337
1342
..
23.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, and
Meister
,
J. J.
, 1997, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
24.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol
.
3
(
1
), pp.
17
32
.
25.
Zhao
,
S. Z.
.
Xu
,
X. Y.
.
Hughes
,
A. D.
.
Thom
,
S. A.
.
Stanton
,
A. V.
.
Ariff
,
B.
. and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.
26.
Tang
,
D. L.
,
Teng
,
Z. Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X. Y.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
, 2009, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
(
10
), pp.
3258
3263
.
27.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Steinman
,
D. A.
,
Spence
,
J. D.
, and
Rutt
,
B. K.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
,
36
(
11
), pp.
2450
2456
.
28.
Tang
,
D. L.
,
Yang
,
C.
,
Mondal
,
S.
,
Liu
,
F.
,
Canton
,
G.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
, 2008, “
A Negative Correlation Between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models
,”
J. Biomech.
,
41
(
4
), pp.
727
736
.
29.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
, 2009, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
J. Biomech. Eng.-Trans. ASME
,
131
(
3
).
30.
Gardner
,
L.
, 2005, “
The Use of Stainless Steel in Structures
,”
Prog. Struct. Eng. Mater.
,
7
(
2
), pp.
45
55
.
31.
Bathe
,
K.
, 1996,
Finite Element Procedures
,
Prentice Hall
,
New York
.
32.
Zhang
,
H.
, and
Bathe
,
K. J.
, 2001, “
Direct and Iterative Computing of Fluid Flows Fully Coupled With Structures
,”
Computational Fluid and Solid Mechanics
,
K. J.
Bathe
, ed.,
Elsevier Science
,
Cambridge, MA
.
33.
ADINA
, 2000, “
ADINA Theory and Modeling Guide
,” Watertown, MA.
34.
Gao
,
H.
,
Long
,
Q.
,
Graves
,
M.
,
Gillard
,
J. H.
, and
Li
,
Z. Y.
, 2009, “
Carotid Arterial Plaque Stress Analysis Using Fluid-Structure Interactive Simulation Based on In Vivo Magnetic Resonance Images of Four Patients
,”
J. Biomech.
,
42
(
10
), pp.
1416
1423
.
35.
Attmann
,
T.
,
Jahnke
,
T.
,
Quaden
,
R.
,
Boening
,
A.
,
Muller-Hulsbeck
,
S.
,
Cremer
,
J.
, and
Lutter
,
G.
, 2005, “
Advances in Experimental Percutaneous Pulmonary Valve Replacement
,”
Ann. Thoracic Surg.
,
80
(
3
), pp.
969
975
.
36.
Attmann
,
T.
,
Quaden
,
R.
,
Jahnke
,
T.
,
Muller-Hulsbeck
,
S.
,
Boening
,
A.
,
Cremer
,
J.
, and
Lutter
,
G.
, 2006, “
Percutaneous Pulmonary Valve Replacement: 3-Month Evaluation of Self-Expanding Valved Stents
,”
Ann. Thoracic Surg.
,
82
(
2
), pp.
708
713
.
37.
Kirchheim
,
H. R.
, 1976, “
Systemic Arterial Baroreceptor Reflexes
,”
Physiol. Rev.
,
56
(
1
), pp.
100
176
.
38.
Chapleau
,
M. W.
,
Hajduczok
,
G.
, and
Abboud
,
F. M.
, 1988, “
Mechanisms of Resetting of Arterial Baroreceptors—An Overview
,”
Am. J. Med. Sci.
,
295
(
4
), pp.
327
334
.
39.
Mendelowitz
,
D.
, and
Scher
,
A. M.
, 1988, “
Pulsatile Sinus Pressure Changes Evoke Sustained Baroreflex Responses in Awake Dogs
,”
Am. J. Physiol.
,
255
(
3
), pp.
H673
H678
.
40.
Chapleau
,
M. W.
,
Heesch
,
C. M.
, and
Abboud
,
F. M.
, 1987, “
Prevention or Attenuation of Baroreceptor Resetting by Pulsatility During Elevated Pressure
,”
Hypertension
,
9
(
6
), pp.
137
141
.
41.
Chapleau
,
M. W.
,
Hajduczok
,
G.
, and
Abboud
,
F. M.
, 1989, “
Peripheral and Central Mechanisms of Baroreflex Resetting
,”
Clin. Exp. Pharmacol. Physiol.
,
16
(
15
), pp.
31
43
.
42.
Chapleau
,
M. W.
,
Hajduczok
,
G.
, and
Abboud
,
F. M.
, 1989, “
Pulsatile Activation of Baroreceptors Causes Central Facilitation of Baroreflex
,”
Am. J. Physiol.
,
256
(
6
), pp.
H1735
H1741
.
43.
Mohaupt
,
M. G.
,
Schmidli
,
J.
, and
Luft
,
F. C.
, 2007, “
Management of Uncontrollable Hypertension With a Carotid Sinus Stimulation Device
,”
Hypertension
,
50
(
5
), pp.
825
828
.
44.
Uppuluri
,
S.
,
Storozynsky
,
E.
, and
Bisognano
,
J.
, 2009, “
Baroreflex Device Therapy in the Treatment of Hypertension
,”
Curr. Hypertens. Rep.
,
11
(
1
), pp.
69
75
.
45.
Schmidli
,
J.
,
Savolainen
,
H.
,
Eckstein
,
F.
,
Irwin
,
E.
,
Peters
,
T. K.
,
Martin
,
R.
,
Kieval
,
R.
,
Cody
,
R.
, and
Carrel
,
T.
, 2007, “
Acute Device-Based Blood Pressure Reduction: Electrical Activation of the Carotid Baroreflex in Patients Undergoing Elective Carotid Surgery
,”
Vascular
,
15
(
2
), pp.
63
69
.
46.
Andresen
,
M. C.
,
Krauhs
,
J. M.
, and
Brown
,
A. M.
, 1978, “
Relationship of Aortic Wall and Baroreceptor Properties During Development in Normotensive and Spontaneously Hypertensive Rats
,”
Circulation Res.
,
43
(
5
), pp.
728
738
.
47.
Andresen
,
M. C.
, 1984, “
Short- and Long-Term Determinants of Baroreceptor Function in Aged Normotensive and Spontaneously Hypertensive Rats
,”
Circulation Res.
,
54
(
6
), pp.
750
759
.
48.
Leach
,
J. R.
,
Rayz
,
V. L.
,
Soares
,
B.
,
Wintermark
,
M.
,
Mofrad
,
M. R. K.
, and
Saloner
,
D.
, 2010, “
Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-Rupture Imaging
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2748
2765
.
49.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation—Positive Correlation Between Plaque Location and Low and Oscillating Shear-Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
50.
Zhao
,
S. Z.
,
Ariff
,
B.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
, and
Xu
,
X. Y.
, 2002, “
Inter-Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans
,”
J. Biomech.
,
35
(
10
), pp.
1367
1377
.
You do not currently have access to this content.