Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics.

References

References
1.
Golzarian
,
J.
,
Sun
,
S.
, and
Sharafuddin
,
M. J.
, 2006,
Vascular Embolotherapy: A Comprehensive Approach
,
Springer-Verlag
,
Berlin
, Vol.
1
.
2.
Boehm
,
T.
,
Folkman
,
J.
,
Browder
,
T.
, and
O’Reilly
,
M. S.
, 1997, “
Antiangiogenic Therapy of Experimental Cancer Does Not Induce Acquired Drug Resistance
,”
Nature (London)
,
390
, pp.
404
407
.
3.
Di Segni
,
R.
,
Young
,
A. T.
,
Zhong
,
Q.
, and
Castaneda-Zuniga
,
W. R.
, 1997,
Embolotherapy: Agents, Equipment, and Techniques, in Interventional Radiology
,
W. R.
Castaneda-Zuniga
, ed.,
Williams and Wilkins
,
Baltimore
.
4.
Bull
,
J. L.
, 2007, “
The Application of Microbubbles for Targeted Drug Delivery
,”
Expert Opin. Drug Delivery
,
4
, pp.
475
493
.
5.
Bull
,
J. L.
, 2005, “
Cardiovascular Bubble Dynamics
,”
Crit. Rev. Biomed. Eng.
,
33
, pp.
299
346
.
6.
Apfel
,
R.
, 1998, “
Activatable Infusable Dispersions Containing Drops of a Superheated Liquid for Methods of Therapy and Diagnosis
,” US Patent No. 5,840,276.
7.
Quay
,
S.C.
, 1996, “
Phase Shift Colloids as Ultrasound Contrast Agents
,” US Patent No. 5,558,853.
8.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Woydt
,
M.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
, 2002, “
in vivo Droplet Vaporization for Occlusion Therapy and Phase Aberration Correction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
, pp.
726
738
.
9.
Haworth
,
K. J.
,
Fowlkes
,
J. B.
,
Carson
,
P. L.
, and
Kripfgans
,
O.D.
, 2008, “
Towards Aberration Correction of Transcranial Ultrasound Using Acoustic Droplet Vaporization
,”
Ultrasound Med. Biol.
,
34
, pp.
435
445
.
10.
Fabiilli
,
M. L.
,
Haworth
,
K. J.
,
Sebastian
,
I. E.
,
Kripfgans
,
O. D.
,
Carson
,
P. L.
, and
Fowlkes
,
J. B.
, 2010, “
Delivery of Chlorambucil using an Acoustically-Triggered Perfluoropentane Emulsion
,”
Ultrasound Med. Biol.
,
36
, pp.
1364
1375
.
11.
Fabiilli
,
M. L.
,
Lee
,
J. A.
,
Kripfgans
,
O. D.
,
Carson
,
P. L.
, and
Fowlkes
,
J. B.
, 2010, “
Delivery of Water-Soluble Drugs using Acoustically Triggered Perfluorocarbon Double Emulsions
,”
Pharm. Res.
,
27
, pp.
2753
2765
.
12.
Miller
,
D. L.
,
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
, and
Carson
,
P. L.
, 2000, “
Cavitation Nucleation Agents for Non-Thermal Ultrasound Therapy
,”
J. Acoust. Soc. Am.
,
107
, pp.
3480
3486
.
13.
Zhang
,
P.
, and
Porter
,
T.
, 2010, “
An In Vitro Study of a Phase-Shift Nanoemulsion: A Potential Nucleation Agent for Bubble-Enhanced HIFU Tumor Ablation
,”
Ultrasound Med. Biol.
,
36
, pp.
1856
1866
.
14.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Miller
,
D. L.
,
Eldevik
O. P.
, and
Carson
,
P. L.
, 2000, “
Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications
,”
Ultrasound Med. Biol.
,
26
, pp.
1177
1189
.
15.
Kripfgans
,
O. D.
,
Fabiilli
,
M. L.
,
Carson
,
P. L.
, and
Fowlkes
,
J. B.
, 2004, “
On the Acoustic Vaporization of Micrometer-Sized Droplet
,”
J. Acoust. Soc. Am.
,
116
, pp.
272
281
.
16.
Lo
,
A. H.
,
Kripfgans
,
O. D.
,
Carson
,
P. L.
,
Rothman
,
E. D.
, and
Fowlkes
,
J. B.
, 2007, “
Acoustic Droplet Vaporization Threshold: Effects of Pulse Duration and Contrast Agent
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
, pp.
933
946
.
17.
Fabiilli
,
M. L.
,
Haworth
,
K. J.
,
Fakhri
,
N. H.
,
Kripfgans
,
O. D.
,
Carson
,
P. L.
, and
Fowlkes
,
J.
, B., 2009, “
The Role of Inertial Cavitation in Acoustic Droplet Vaporization
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
, pp.
1006
1017
.
18.
Giesecke
,
T.
, and
Hynynen
,
K.
, 2003, “
Ultrasound-Mediated Cavitation Thresholds of Liquid Perfluorocarbon Droplets In Vitro
,”
UltrasoundMed. Biol.
,
29
, pp.
1359
1365
.
19.
Ye
,
T.
, and
Bull
,
J. L.
, 2004, “
Direct Numerical Simulations of Micro-Bubble Expansion in Gas Embolotherapy
,”
J. Biomech. Eng.
,
126
, pp.
745
759
.
20.
Ye
,
T.
, and
Bull
,
J. L.
, 2006, “
Microbubble Expansion in a Flexible Tube
,”
J. Biomech. Eng.
,
128
, pp.
554
563
.
21.
Wong
,
Z. Z.
, 2009, “
Gas Embolotherapy: Bubble Evolution in Acoustic Droplet Vaporization and Design of a Benchtop Microvascular Model
,” Ph.D. thesis, University of Michigan, Ann Arbor.
22.
Wong
,
Z. Z.
,
Kripfgans
,
O. D.
,
Qamar
,
A.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L
, 2011, “
Bubble Evolution in Acoustic Droplet Vaporization at Physiological Temperature via Ultra-High Speed Imaging
,”
Soft Matter
,
7
, pp.
4009
4016
.
23.
Qamar
,
A.
,
Wong
,
Z. Z.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
, 2010, “
Dynamics of Acoustic Droplet Vaporization in Gas Embolotherapy
,”
Appl. Phys. Lett.
96
(
14
),
143702
.
24.
Shepherd
,
J. E.
, and
Sturtevant
,
B.
, 1982, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
, pp.
379
402
.
25.
Avedisian
,
C. T
, 1986,
Bubble growth in superheated liquid droplets, Encyclopedia of Fluid Mechanics, Vol 3: Gas Liquid Flow
,
N. P.
Cheremisnoff
, ed.,
Gulf Publishing
,
Houston Texas
.
26.
McCann
,
H.
,
Clarke
,
L. J.
, and
Masters
,
A. P.
, 1989, “
An Experimetal Study of Vapour Growth at Superheated Limit Temperature
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1077
1093
.
27.
Chitavins
,
S. M.
, 1987, “
Explosive Vaporization of Small Droplets by a High Energy Laser Beam
,”
J. Appl. Phys.
,
62
, pp.
4387
4394
.
28.
Frost
,
D. L.
, 1989, “
Initiation of Explosive of a Droplet with Shock Wave
,”
Exp. Fluids
,
8
, pp.
121
128
.
29.
Curra
,
F. P.
,
Mourad
,
P. D.
,
Khokhlova
,
V. A.
,
Cleveland
,
R. O.
, and
Crum
,
L. A.
, 2000, “
Numerical Simulations of Heating Patterns and Tissue Temperature Response due to High-Intensity focused Ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
, pp.
1077
1089
.
30.
Billard
,
B. E.
,
Hynynen
,
K.
, and
Roemer
,
R. B.
, 1990, “
Effects of Physical Parameters on High Temperature Ultrasound Hyperthermia
,”
Ultrasound Med. Biol.
,
16
, pp.
409
420
.
31.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase Change Phenomena
,
Hemisphere
,
Washington
.
32.
Demirdzic
I.
, and
Peric
,
M.
, 1988, “
Space Conservation Law in Finite Volume Calculations of Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
1037
1050
.
33.
Perić
,
M.
, and
Ferziger
,
J. H.
, 2002,
Computational Fluid Dynamics
,
3rd ed.
,
Springer-Verlag
,
New York
.
34.
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 1995, “
Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis using Unstructured Moving Meshes with Cells of Arbitrary Topology
,”
Comput. Methods Appl. Mech. Eng.
,
125
, pp.
235
255
.
35.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1787
1806
.
36.
Demirdzic
,
I.
,
Lilek
,
Z.
, and
Perić
,
M.
, 1993, “
A Collocated Finite Volume Method for Predicting Flows at All Speeds
,”
Int. J. Numer. Methods Fluids
,
16
, pp.
1029
1050
.
37.
Frost
,
D. L.
, 1988, “
Dynamics of Explosive Boiling of a Droplet
,”
Phys. Fluids
,
31
, pp.
2554
2561
.
38.
Dewey
,
C. F.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, and
Davies
,
P. F.
, 1981, “
The Dynamic Response of Vascular Endothelial Cell to Fluid Shear Stress
,”
J. Biomed. Eng.
,
103
, pp.
177
185
.
39.
Fung
,
Y. C.
, 1997,
Biomechanics: Circulation
,
Springer
,
New York
.
You do not currently have access to this content.