Based on the fact that malignant cancerous lesions (neoplasms) develop high metabolism and use more blood supply than normal tissue, infrared thermography (IR) has become a reliable clinical technique used to indicate noninvasively the presence of cancerous diseases, e.g., skin and breast cancer. However, to diagnose cancerous diseases by IR, the technique requires procedures that explore the relationship between the neoplasm characteristics (size, blood perfusion rate and heat generated) and the resulting temperature distribution on the skin surface. In this research work the dual reciprocity boundary element method (DRBEM) has been coupled with the simulated annealing technique (SA) in a new inverse procedure, which coupled to the IR technique, is capable of estimating simultaneously geometrical and thermophysical parameters of the neoplasm. The method is of an evolutionary type, requiring random initial values for the unknown parameters and no calculations of sensitivities or search directions. In addition, the DRBEM does not require any re-meshing at each proposed solution to solve the bioheat model. The inverse procedure has been tested considering input data for simulated neoplasms of different sizes and positions in relation to the skin surface. The successful estimation of unknown neoplasm parameters validates the idea of using the SA technique and the DRBEM in the estimation of parameters. Other estimation techniques, based on genetic algorithms or sensitivity coefficients, have not been capable of obtaining a solution because the skin surface temperature difference is very small.

References

1.
Malignant Neoplasms Histopathology Registry, 2001, “
Summary of Cancer
,” Mexican Department of Health, http://www.dgepi.salud.gob.mx/diveent/rhnm-01/rhnm-01.htmhttp://www.dgepi.salud.gob.mx/diveent/rhnm-01/rhnm-01.htm
2.
Warburg
,
O.
,
Metabolism of Tumours
(
Constable & Co.
,
London
, 1930).
3.
Brasfield
,
R. D.
,
Laughlia
,
J. S.
, and
Sherman
,
R. S.
, 1964, “
Thermography in the Management of Cancer: a Preliminary Report
,”
Ann. N.Y. Acad. Sci.
,
121
, pp.
235
247
.
4.
Pirtini
,
C.
, and
Herman
,
C.
, 2011, “
Quantification of the Thermal Signature of a Melanoma Lesion
,”
Int. J. Therm. Sci.
,
50
, pp.
421
431
.
5.
Gautherie
,
M.
, 1980, “
Thermopathology of Breast Cancer: Measurements and Analysis of in vivo Temperature and Blood Flow
,”
Ann. N.Y. Acad. Sci.
,
335
, pp.
383
415
.
6.
Buzug
,
T. M.
,
Schumann
,
S.
,
Pfaffmann
,
L.
,
Reinhold
,
U.
, and
Ruhlmann
,
J.
, 2006, “
Skin-Tumor Classification with Functional Infrared Imaging
,”
Proc. 8th. IASTED International Conference Signal and Image Processing
,
ACTA Press
,
Anaheim
, pp.
313
322
.
7.
Santa Cruz
,
G. A.
,
Bertotti
,
J.
,
Marin
,
J.
,
Gonzalez
,
S. J.
,
Gossio
,
S.
,
Alvarez
,
D.
,
Roth
,
B. M. C.
,
Menendez
,
P.
,
Pereira
,
M. D.
,
Albero
,
M.
,
Cubau
,
L.
,
Orellano
,
P.
, and
Liberman
,
S. J.
, 2009, “
Dynamic Infrared Imaging of Cutaneous Melanoma and Normal Skin in Patients Treated With BNCT
,”
Appl. Radiat. Isot.
,
67
, pp.
S54
S58
.
8.
Keyserlingk
,
J.
,
Ahlgren
,
P.
,
Yu
,
E.
,
Belliveau
,
N.
, and
Yassa
,
M.
, 2000, “
Functional Infrared Imaging of the Breast
,”
IEEE Eng. Med. Biol. Mag.
,
19
(
3
), pp.
30
41
.
9.
Paruch
,
M.
, and
Majchrzak
,
E.
, 2007, “
Identification of Tumor Region Parameters Using Evolutionary Algorithm and Multiple Reciprocity Boundary Element Method
,”
Eng. Applic. Artif. Intell.
,
20
, pp.
647
655
.
10.
Partridge
,
P. W.
, and
Wrobel
,
L.C.
, 2007, “
An Inverse Geometry Problem for the Localization of Skin Tumours by Thermal Analysis
,”
Eng. Anal. Boundary Elem.
,
31
, pp.
803
811
.
11.
Agnelli
,
J. P.
,
Barrea
,
A. A.
, and
Turner
C. V.
, 2011, “
Tumor Location and Parameter Estimation by Thermography
,”
Math. Comput. Modell.
,
53
, pp.
1527
1534
.
12.
Mital
,
M.
, and
Scott
,
E. P.
, 2007, “
Thermal Detection of Embedded Tumors Using Infrared Imaging
,”
ASME J. Biomech. Eng.
,
129
, pp.
33
39
.
13.
Liu
,
J.
, and
Xu
,
X.
, 2000, “
Boundary Information Based Diagnostics on the Thermal States of Biological Bodies
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2827
2839
.
14.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
, pp.
93
122
.
15.
Partridge
,
P. W.
,
Brebbia
,
C. A.
, and
Wrobel
,
L. C.
,
The Dual Reciprocity Boundary Element Method
(
Elsevier
,
Amsterdam
, 1992).
16.
Katsikadelis
,
J. T.
,
Boundary Elements: Theory and Applications
(
Elsevier
,
London
, 2002).
17.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
18.
Metropolis
,
N.
,
Rosenbluth
,
A.
,
Rosenbluth
,
M.
,
Teller
,
A.
, and
Teller
,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
19.
Ledesma
,
S.
,
Avina
,
G.
, and
Sanchez
,
R.
, 2008, “
Practical Considerations for Simulated Annealing Implementation
,”
Simulated Annealing
,
C. M.
Tan
, ed.,
In-Teh
,
Vienna
, pp.
401
420
.
20.
Pirtini
,
M.
, and
Herman
,
C.
, 2010, “
A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitive Analysis
,”
Phys. Med. Biol.
,
55
, pp.
5933
5951
.
21.
Fogelson
,
I. B.
,
Berdkinov
,
S. I.
, and
Zavitkov
,
Y. V.
, 1996, “
Electrical Thermometers and Sensors for Measuring Human Body Temperature
,”
Biomed. Eng.
,
30
, pp.
211
213
.
You do not currently have access to this content.